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Figure 1: Action-driven scene evolution alters an initial scene consisting of a desk and a dining table. The initial scene and three intermediate
evolution snapshots (after 1, 4, and 30 actions, respectively) are shown (left) with zoom-ins for better viewing on the right. Applied actions
trigger both object relocation (e.g., keyboard and headphone) and insertion (e.g., laptop and books). Action selection and the resulting 3D
scene evolution are all performed automatically based on action data learned from annotated photos.

Abstract

We introduce a framework for action-driven evolution of 3D indoor
scenes, where the goal is to simulate how scenes are altered by hu-
man actions, and specifically, by object placements necessitated by
the actions. To this end, we develop an action model with each type
of action combining information about one or more human poses,
one or more object categories, and spatial configurations of objects
belonging to these categories which summarize the object-object
and object-human relations for the action. Importantly, all these
pieces of information are learned from annotated photos. Corre-
lations between the learned actions are analyzed to guide the con-
struction of an action graph. Starting with an initial 3D scene, we
probabilistically sample a sequence of actions from the action graph
to drive progressive scene evolution. Each action triggers appropri-
ate object placements, based on object co-occurrences and spatial
configurations learned for the action model. We show results of
our scene evolution that lead to realistic and messy 3D scenes, as
well as quantitative evaluations by user studies which compare our
method to manual scene creation and state-of-the-art, data-driven
methods, in terms of scene plausibility and naturalness.
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1 Introduction

We live in a 3D world and we constantly act on and interact with the
3D scene environments that surround us. The scenes evolve over
time, driven by object movements resulting from human actions. It
seems natural to ask whether digital 3D scenes can be processed
in such an action-driven manner. With an increasing demand of 3D
scene data, especially those of indoor environments, from emerging
VR/AR applications to data-driven scene analysis, techniques for
scene generation are drawing more attention in the graphics and
vision communities. A method for action-driven scene evolution
aims to replicate how indoor scenes evolve in real life, producing
continuous series of realistic virtual 3D scenes.

Most indoor scenes available from public data repositories, e.g., the
3D warehouse, possess the organization and cleanness of a show-
room; these scenes were mostly designed. In real life, our offices,
labs, and bedrooms are often messier. So far, aside from scene
construction from images [Liu et al. 2015; Fisher et al. 2015] and
sketches [Xu et al. 2013], the predominant approach to realistic
scene synthesis has been based on exemplar-based learning [Fisher
et al. 2012], where a scene is produced by sampling from a prob-
abilistic distribution learned from 3D scene examples. In real life
however, a scene is not a random whole “event”, but a snapshot
from a continuous scene evolution.

In this paper, we introduce a framework for action-driven evolu-
tion of 3D indoor scenes, where the goal is indeed to simulate how
scenes are altered by human actions, and specifically, by object
placements necessitated by the actions. In our work, an action can
involve one or more objects and one or more humans (e.g., a group
meal). Object placements for a given scene can involve either relo-
cating existing objects or inserting new objects into the scene. For
instance, applying the action “use laptop on desk while sitting” to a
scene without a chair near the desk would cause a chair to be moved
there to support the action. Applying the action “eat dinner on table
while sitting” would trigger the insertion of several objects, e.g.,
plates and forks, to an otherwise empty dining table.

We develop an action model which supports action-driven 3D scene
evolution. The model is data-driven and learned from annotated
scene data. Each type of action combines information about one
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Figure 2: An overview of our action-driven 3D scene evolution. Action models are learned from annotated photos (left). An action graph
(middle) is built, whose nodes are the learned actions, and edges represent transition probabilities between the actions. To drive the evolution
of an initial 3D scene, we apply a sequence of actions sampled from the action graph onto the scene. Each sampled action triggers appropriate
object placements, i.e., relocation or insertion, producing a continuous scene evolution (right).

or more human poses, one or more object categories, and spatial
configurations of objects belonging to these categories which sum-
marize the object-to-object and object-to-human (the pose in the
action model) relations for the action. Correlation between the
learned actions are analyzed to guide the construction of an action
graph, whose nodes correspond to actions and edges encode cor-
relations between actions in the form of transitional probabilities.
Scene evolution starts with an initial 3D indoor scene. We proba-
bilistically sample an action sequence from the action graph, where
each action triggers appropriate object placements, which continu-
ously evolve the scene; see Figures 1 and 2.

A key question facing any data-driven approach is choice of the
data. To drive 3D scene synthesis, 3D data of human actions and
human-object interactions are most directly applicable. However,
acquiring such data in large volume is highly costly with challenges
from reconstruction, tracking, and annotation. Annotating existing
3D scenes is an option, but such scenes are limited in number and
variety, and they were mostly designed without human presence or
intimate connections to human actions. With these in mind, we turn
to the vast source of photographs of indoor scenes with daily human
activities. Specifically, we utilize the Microsoft COCO (Common
Objects in Context) database [Lin et al. 2014], which offers a solid
baseline for our data requirement: a large number of photos with
object segmentations, labels, and text captions describing the con-
tents, including human actions, in each photo. Yet, to learn our ac-
tion model, much information about human poses and inter-object
relations is still missing. Recovering necessary 3D action data to
drive 3D scene synthesis is a challenging problem in general.

To learn action models from COCO, we first analyze the photo cap-
tions therein to collect photos related to certain actions. Then, pho-
tos of the same action are clustered based on object categories and
human poses within the photos. Each cluster defines an action node
in our action graph. Object co-occurrences, object-human, and
object-object spatial relations are learned within each action node.
For the action graph, edges are added to all pairs of action nodes,
and also a self loop to the node itself. We compute the transitional
probabilities by examining the overlap of associated objects. From
the action graph, plausible action sequences are generated automat-
ically and stochastically. Each action applied triggers appropriate
object relocations or insertions, based on object co-occurrences and
spatial configurations learned for the action model.

Example-based synthesis [Fisher et al. 2012] is also data-driven, but
it takes a holistic view of scene generation: the produced scene must
be similar to the exemplars overall and likely belonging to the same
scene category. In contrast, action-driven evolution is a procedural
and more atomic form of scene generation that is not tied to scene
categories; the key criterion is what actions are applicable in a given
scene context. For example, the action “read book on desk while

sitting” is applicable in any scene with a desk. No less important
is the fact that action data is more compact and more atomic than
whole scene exemplars. Applying actions one at a time allows more
local control and generates scenes with higher granularity.

To summarize, by taking an action-driven approach to indoor scene
generation, our work offers a more atomic and fine-grained view of
the problem. Our contributions include:

• A progressive approach to scene generation which leads to
an evolving and granular set of 3D scenes exhibiting a higher
level of scene complexity and messiness than previous works,
without compromising plausibility and naturalness.

• Action learning from annotated photos rather than 3D scene
exemplars in previous works. This enables us to tap into a
much richer data source for action-driven scene processing.

• A more complete action model which accounts for group ac-
tions, as well as co-occurrences and joint placement of multi-
ple objects, allowing both object relocation and insertion.

We show results of our scene evolution, leading to realistic and
messy 3D scenes. Evaluations include user studies that compare our
method to manual scene creation and state-of-the-art, data-driven
methods, in terms of scene plausibility and naturalness.

2 Related work

Aside from serving VR/AR applications, large collections of 3D
scenes are valuable both as training data to support machine learn-
ing for scene understanding and as model repositories for model-
driven 3D scene modeling [Kim et al. 2012; Shao et al. 2012; Xu
et al. 2013; Fisher et al. 2015]. Recently, there have been a great
deal of work in computer graphics and computer vision on the pro-
cessing and analysis of indoor scenes, e.g., reconstruction, under-
standing, and editing. In this section, we only focus on works most
closely related to ours, i.e., those on 3D scene generation as well as
human- or action-oriented scene processing.

Scene modeling. Interactive, user-centric tools for 3D scene
modeling exist commercially, e.g., Autodesk Homestyler1, Sweet
Home 3D2, and in the research literature. The use of such tools
requires advanced modeling skills and the modeling time is often
quite long. Data-driven scene modeling or reconstruction from X
has gained much interest lately where X could be a sketch [Xu et al.
2013], a photograph [Liu et al. 2015], or a depth scan [Kim et al.
2012; Shao et al. 2012; Chen et al. 2014]. In these cases, the object

1http://www.homestyler.com/
2http://www.sweethome3d.com/
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Figure 3: Given an initial scene (a), placing a laptop based on
pairwise human-object relations would rely on a human pose pre-
dicted for the chair (b). In contrast, applying the action “use lap-
top on table while sitting” by our method simultaneously places the
laptop and rotates the chair (c), owing to the joint positions learned
of all three objects in the scene: table, chair, and laptop.

arrangements inferrable from X are fixed and guide the retrieval and
placement of suitable 3D objects from a model repository. In our
work, we are interested in a more open-ended and less constrained
synthesis, not modeling from X.

Furniture layout optimization. Several approaches have been
proposed for the furniture layout optimization problem. Germer
and Schwarz [2009] arrange a room by letting each piece of fur-
niture act as an agent in a multi-agent system, following manu-
ally specified room semantics and furniture layout rules. Merrell
et al. [2011] turn furniture layout guidelines into a probabilistic
model and suggest sensible room layouts by sampling from the den-
sity function, as a user interactively moves furniture in a room. In
contrast, Yu et al. [2011] learn the layout rules from 3D scene ex-
emplars. All of these solutions optimize the layout of a given room
with a given set of furniture. In our work, we evolve a 3D scene by
moving and inserting objects progressively.

Learning from 3D data. Existing 3D scene synthesis methods
predominantly resort to probabilistic reasoning from 3D exemplars
and 3D scene databases to drive the synthesis [Fisher et al. 2012;
Jiang et al. 2012; Fisher et al. 2015; Savva et al. 2016; Sadeghipour
et al. 2016]. Some of these methods, e.g., Fisher et al. [2012], take
a holistic approach to scene generation, while others progressively
alter an initial scene. These approaches could all be limited by
the availability of well constructed and annotated 3D scenes. For
reference, the state-of-the-art work by Fisher et al. [2012] worked
with 130 user-constructed 3D scenes. The lack of data limits both
the variability and the scale of the generated scenes. In our work,
we utilize thousands of photos with action-related text annotations
from the COCO database. The challenge is to recover the 3D scene
layout and properly embed human poses into the photos.

Action-driven scene understanding. There has been a great
deal of work in robotics and computer vision, and more recently
in computer graphics, on utilizing human actions for various anal-
ysis tasks. After all, humans understand the world and function
in it through their actions. Works that have been applied to 3D
scenes include geometry estimation [Fouhey et al. 2012], object
labeling [Jiang et al. 2013], and affordance learning [Savva et al.
2014], to name just a select few. The key problem is to fit static
human poses or pose sequences into various scene contexts to un-
derstand the structure and functionality of a scene and the objects
therein. In our work, such a fitting task is necessary. But our fo-
cus is not on automated analysis, but on how to organize the fitted
human poses and their surroundings, learn a suitable action model,
and then apply the model for 3D scene synthesis.

Human- or activity-centric scene modeling. Jiang et al. [2012]
propose an interesting, human-centric approach to arrange objects
in a room, focusing more on human-object relations rather than

(a) (b) (c)

Figure 4: With only a desk in an initial scene (a), the action “use
laptop on table while sitting” can insert a chair and a laptop along
with other objects; see (b) and (c) for two possible results from our
action-driven scene synthesis. In contrast, without a chair in (a), a
sitting pose is unlikely to be predicted near the desk solely by pose
estimation, hence a chair is unlikely to be placed or retrieved.

object-object relations. Specifically, they learn, from 3D scene ex-
emplars, density functions which characterize how each type of ob-
ject is placed relative to a human pose. The role of the density
functions is similar to that of our action model for scene genera-
tion. However, one distinction is that these density functions en-
code pairwise human-object relations while an action in our model
can encode joint relations among multiple humans and objects; see
Figure 3 for a comparison. When arranging a room, they first infer
possible human poses and then place one object at a time, based on
the predicted poses and the learned human-object or object-object
relations. In contrast, our actions can trigger the placement of one
or more objects at a time and the placement is not predicated only
by pose estimation — it accounts for both pose fitting and object
co-occurrence; see Figure 4 for a visual example.

Sharf et al. [2013] study object mobilities in 3D scenes and edit
scenes by altering object arrangements and configurations (e.g.,
drawers opening or closing) based on their mobilities. Mobilities of
objects arise from their movements due to human actions. However,
they learn mobilities, again from 3D scene exemplars, by analyzing
only object-object relations between reoccurring objects.

Fisher et al. [2015] propose an activity-centric approach to func-
tional scene modeling, which generates 3D scenes that allow the
same human activities as real environments captured through noisy
and incomplete 3D scans. Given an input scan, affordance analy-
sis [Savva et al. 2014] is first performed to detect potential activity
regions and activity types. Then objects relevant to the activities
are retrieved and fitted to the scan over the activity regions under
human-object interaction priors learned from 3D scene databases.
While their work focuses on modeling functionally similar scenes
conditioned on a coarse geometric input scan, the input scan is not
a must. The synthesis problem we address in this paper has a dif-
ferent input and different goal while learning priors from different
data sources. Our action model is learned from annotated photos
with only spatial constraints, while their activity model is learned
from 3D scene exemplars with semantic annotations. More impor-
tantly, their synthesis is designed to serve functional scene mod-
eling where object placements are mainly constrained by human
activities inferred from a given scene; see Figure 4. In contrast, our
action model evolves a scene with object placements conditioned
on both human-object relations and object co-occurrences.

Most recently, Savva et al. [2016] synthesize interaction snap-
shots by sampling prototypical interaction graphs learned from
real-world observations of human-object interactions captured with
commodity RGB-D sensors. In contrast, we learn atomic actions
from annotated photos for progressive scene synthesis. If we were
to place a rigged human character in a single scene synthesized in
our work, the result would be an interaction snapshot. However,
our goal is not to sample a single scene instance, but to produce
a continuously evolving sequence of snapshots. Furthermore, we



aim to produce realistic and messy scenes populated with many ob-
jects, while [Savva et al. 2016] focuses on accurately depicting the
interaction between a human and few key objects.

COCO+action database. A highly related recent development
is the COCO-a database established by [Ronchi and Perona 2015].
COCO-a enriches the Microsoft COCO database with comprehen-
sive annotations of visual actions, designed to facilitate action dis-
crimination and scene understanding. However, more than half of
the annotated actions in COCO-a happen between people, e.g., talk-
ing and playing games, and occur during sports play or outdoors.
As well, human representations remain as whole segments without
pose embedding or joint labeling, which are necessary for action-
driven object placement. For these reasons, we produced our own
action-oriented annotations over photos from COCO and elsewhere
that are designed to serve action-driven 3D scene evolution.

3 Overview

We first introduce the notations of our action model and action
graph, with which we present an overview of our two-stage learning
and synthesis framework; see Figure 2 for an illustration.

Action model. We describe an indoor scene action by the follow-
ing action model A =< T ,K,H; C,D >, where T is the action
type, K is the key object specifying where the action happens, H
is a representative 3D human pose, C stores the probability distri-
bution of occurrence times for each object, and D specifies spatial
configuration of constituent objects: for every object, we summa-
rize its positional information relative to both the human pose and
other objects. By definition an action model can be uniquely identi-
fied by the combination of (T ,K,H), which says “what action (T )
is performed where (K) with what pose (H)”. By taking all these
five elements into consideration, our method can model actions oc-
curring in rich contexts with human pose variations, e.g. reading
book lying on bed vs. reading book on desk while sitting.

Action graph. This is a weighted graph G = (V,E) over a set
of nodes V , each of which is an action defined by the above action
model. An edge ei→j ∈ E is directed from an action node ai ∈ V
to another node aj ∈ V or a node to itself, with weight wi→j
defining the transitional probability from ai to aj , i.e., how likely is
action aj going to happen after action ai. A action graph is actually
the state diagram of a Markov Chain, from which action sequences
can be sampled to drive scene evolution.

System overview. As shown in Figure 2, our system consists of
two stages: an offline action learning stage and an online scene syn-
thesis stage. In the learning stage, we construct an action graph
from action nodes learned from the Microsoft COCO database.
First, we retrieve a set of instance images from the COCO database
for each action type based on keyword searching, and infer 3D hu-
man pose and object layout information from each image (Section
4.1). We then cluster the instance images according to their associ-
ated actions – (T ,K,H). After that, we construct the action model
for each cluster by analyzing the occurrence and spatial layouts of
objects (Section 4.2). Lastly, we construct an action graph over the
action nodes and compute edge transitional probability based on the
correlation between action nodes (Section 4.3).

After the action graph is constructed, we use it to drive the evolu-
tion of a scene by applying a sequence of actions sampled from the
graph – this is the online scene synthesis stage. Given an initial
scene, we first adapt the action graph by disabling action nodes that
cannot be applied to the scene (Section 5.1). Then we generate an
action sequence by sampling the adapted action graph. Note that
the action sequences are not learned in the learning stage; they are
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Figure 5: (a) A typical image from COCO with block annotation
for each object. (b) The annotated 2D skeleton for 3D human pose
recovery. (c) The recovered 3D pose (green) is projected onto the
image, as well as its right and frontal directions (blue). The center
of torso (red bar) is defined as body center. Placing the right and
frontal vectors there forms a Cartesian coordinate system. Each
object is reduced to a 2D point (red square for the key object and
red crosses for others) located at its polygonal center. (d) All object
locations are mapped into a standard Cartesian system and their
polar coordinates are recorded for learning their spatial layout.

instances of Markov chains sampled from the action graph. The
realization of an action involves placement of 3D human pose and
synthesis (insertion and relocation) of corresponding objects (Sec-
tion 5.2). In the end, we obtain a sequence of evolved scenes after
applying a series of actions to a target scene.

4 Data-driven model construction

In this section, we describe the procedure for data-driven action
learning and action graph construction. Given a set of COCO im-
ages with manually labeled human joints, our method automatically
infer various action models and construct an action graph over all
action nodes. As far as we know, this represents the first attempt
at using 2D images to construct action models for 3D objects and
scenes. Without loss of generality, we first introduce the procedure
for learning actions performed by a single person (Sections 4.1-
4.3). We then describe how to extend the procedure to learn group
actions that involve multiple persons (Section 4.4).

4.1 Preparing action instances

The first step of our learning procedure is to collect a large number
of action instances (exemplars), each of which describes the hu-
man pose, the key object, and the object-object and object-human
relationships involved in the action. To this end, we take as in-
put the Microsoft COCO database, which consists of a large set
of pre-segmented, annotated photos providing the exact labels we
need for extracting action instances: human-object segmentation,
object category labeling, and five captions per photo that linguisti-
cally describes the scene; see Figure 5(a). Starting from the COCO
database, our method first finds a set of instance images for each ac-
tion type. Then, the 3D human pose is recovered for each instance
with the help of manually labeled joints. After that, we infer the



Figure 6: Five representative 3D human poses used for our action
models. From left: standing, sitting, sitting with straight legs, ly-
ing with the face down, and lying with the face up. Angles at red
skeletal joints are used for matching the recovered skeletons.

key object and 3D object layout in each instance with the help of
recovered 3D human pose.

Instance extraction. Action type is the linguistic description of a
typical activity performed by humans in an indoor environment. To
start with, we predefine eight indoor action types for the experiment
in this work: use computer, use laptop, read book, prepare food,
watch tv, eat snacks, eat dinner and eat dinner in group. These ac-
tion types are selected because the spatial layouts of their involved
objects are anchored to the human poses, which is a necessary con-
dition for our human-centric action model.

Given an action type, we retrieve relevant instance photos from the
COCO database using their associated photo captions. To maxi-
mize recall, we collect synonyms and different tenses of the action
type word and use them for keyword-based searching. For exam-
ple, for action use laptop, the set of keywords we used include use
laptop, using laptop, work laptop, working laptop, operate laptop,
operating laptop, utilize laptop, utilizing laptop. Some of the re-
turned photos may contain multiple irrelevant persons in the back-
ground, or too few object categories to describe a meaningful action
instance. We manually filter out these photos by examining the ob-
ject category labels in the photo. We further remove photos that do
not contain a visible human pose. This gives us a clean set of photo
instances, of size 60 - 150, for each action type.

3D human pose recovery. The COCO database only provides a
2D image region of the human body (Figure 5(a)), while the human
pose definition in our action model is 3D. Hence we need to recover
the most plausible 3D human pose from the 2D image. To this end,
we first manually annotate the human skeleton joints in each action
instance image. Then we apply the method in [Zhou et al. 2015]
to find a 3D pose configuration Hp whose projection on the image
plane matches the 2D joint annotations. To obtain a stable 3D pose
estimation, we also need to manually provide the plausible loca-
tions of as many missing joints as possible, as in the case of partial
occlusion; see Figure 5(b). The output is a 3D human skeleton and
a weak camera projection matrix of the input image.

The resulting 3D human skeleton defines a 3D local frame in the
scene, with origin at the center of the torso skeleton, the right di-
rection determined by the vector between two shoulder joints, and
the up direction defined by the torso. The frontal direction can be
computed by the cross product of the up and right directions; see
Figure 5(c). We use this coordinate frame for inferring and encod-
ing all spatial layout information in the next step; see Figure 5(d).

However, the recovered 3D skeletons may have large variance and
may be partial due to occlusions and thus cannot be directly used as
the representative human pose for our action model. We thus follow
the idea from [Jiang et al. 2012] and introduce five representative
human poses (see Figure 6) for our action model. For each action
instance, we find one representative pose H∗ that best matches the

recovered partial skeletonHp by minimizing

D(Hp,H∗) =
∑
i

ωi‖θi(Hp)− θi(H∗)‖, (1)

where θi ∈ {θleft
hip , θ

right
hip , θ

left
knee, θ

right
knee} are angles at the hip (between

torso and thighs) and knee joints (marked in red in Figure 6), and
ωi = 1 if Hp contains the corresponding joint, with ωi = 0 other-
wise. We assign the resulting representative 3D human pose to H
of the current action instance. This representative pose H is only
used to identify the action of the current instance, while the original
recovered poseHp is used to infer object layout.

Key objects. The key object in an action model specifies where
the action is performed. Its functions are twofold: first, it is fixed
in the scene and decides where and how to place the human pose;
second, it provides a supporting surface for most objects involved
in the action model. Since our work focuses on indoor scenes, we
predefine office desk, dining table, coffee table, kitchen island, bed,
and couch as the candidate key objects. The key object K in an
instance is then automatically recognized by matching the object
labels with the key object categories listed above. If several objects
in the instance matches, we select the one whose image region is
close to the human pose and has the largest region size.

Object layout. Given an action instance image with recovered 3D
human pose and labeled object segmentations, we learn the object-
human and object-object relationships in this step. Without a full
reconstruction of the 3D scene, we encode an object’s relative po-
sition to the human in a 2D polar coordinate system represented by
the projected local human frame. Specifically, we project the local
human frame onto the instance image and assume that the projected
torso skeleton has unit length. The right axis is defined as the polar
axis, as shown in Figure 5(c).

We assume that the key object is always in direct contact with the
human pose: the pose is either (vertically) above the key object or
(horizontally) around it. By assuming that all image instances are
taken by cameras that are positioned in upright orientation, the on-
relationship is true if the torso and thighs are entirely included in
the convex hull of the key object. Otherwise, the human pose is
deemed to be around the key object. For the around-relationship,
we only calculate the angular coordinate ψK of the center of key
object in the local human pose frame.

For each constituent object, we compute the polar coordinates
(r, ψ)o|H of its segment center with respect to the human pose. To
infer the object-object relationship from the image, we translate the
polar coordinate system described above to each object segment
center o and record the polar coordinates of all other constituent
objects o′ as (r, ψ)o′|o. In our experiment, we do not infer the re-
lationship between the key object and constituent objects. Also,
we do not record the layout of chairs because their positions can
be well determined by human poses via a sitting relationship, but
difficult to learn from 2D projections due to occlusions.

4.2 Generating action nodes

After collecting action instances, we group the instances with the
same action (T ,K,H) and construct an action model for each
group. By assuming the instances in a group cover sufficient statis-
tical variance of the constituent objects in terms of their occurrence
frequency and spatial layout, we learn an occurrence model C and
a spatial layout model D for each action model.

Occurrence analysis. An action node usually involves many ob-
jects, which however might vary in their dependencies on the action
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Figure 7: The learned spatial distributions of a few constituent ob-
jects in the action “use computer on desk while sitting”: the object-
human distribution for monitor (a) and keyboard (b) with the hu-
man marked as blue dot, and the keyboard-monitor (c) and mouse-
keyboard (d) distributions with the reference objects (the second
object in each pair) marked as green squares.

model and their occurrence times in the action. For instance, both
laptop and coffee mug can occur in the action node “use laptop on
desk while sitting”. While the laptop must be involved with one
singe instance, the coffee mug might occur multiple times or not
at all. Let O denote the set of objects that occur in at least one of
the extracted image instances, excluding all key objects. Then the
occurrence model C(o, n) of each object o ∈ O is computed by
C(o, n) = N(o, n)/Na, where N(o, n) is the number of instances
that contain n copies of object o, and Na is the total number of
instances of the action model. If an object o has occurrence fre-
quency of C(o) =

∑
n>0 C(o, n) lower than a certain threshold εC ,

we set C(o) = 0, namely C(o, 0) = 1 and C(o, n|n > 0) = 0,
which means the object o will never be involved in this action. This
can remove most of the random objects appearing in the instance
images that are irrelevant to the action node. In all experiments, we
have εC = 0.1. The result occurrence model C(o, n) of object o is
a probability distribution over its occurring times n.

Spatial layout analysis. To encode all possible correlations be-
tween object and human placements caused by an action, we model
each object’s spatial distribution relative to both human pose and
other objects. This is different from our treatment of the occur-
rence model since spatial layout is a more critical factor for scene
synthesis. As well, we have found that a single object-human spa-
tial constraint is insufficient for satisfactory spatial layout.

From a set of input instances belonging to the same action node, we
first learn the distribution of the human orientations with respect to
the key object. We assume that it follows a von Mises distribution
P(H,K) and estimate its parameters from angular observations in
the instance images, which has numerical solutions and can be done
with a maximum likelihood estimation (MLE).

Then we learn how each object o is arranged with respect to the
human pose H. Ideally, we should directly model the spatial prob-
ability distribution over a two-dimensional space (r, φ), which de-
fines the distance to the body center and the orientation angle with
respect to the right direction of the human pose. In practice, we
found that this 2D distribution can be well modeled by the product
of two 1D distributions in distance and angle domain, which allows
us to estimate the parameters of each distribution separately. We
thus assume that the distance r follows a log-normal distribution,
and the angle φ is a mixture of von Mises distributions. Concisely,
the object-human distribution is defined as

P(o,H; Θ) = P(r,H; Θr) ∗ P(φ,H; Θφ). (2)

We apply MLE to estimate the parameters of the log-normal distri-
bution P(r,H; Θr), which has closed form solution. The number
of von Mises distributions in the mixture P(φ,H; Θφ) is a latent
variable; we test values ranging from 1 to 4 and choose the one that
maximizes the Akaike information criterion [Akaike 1973]. We
then fix the number of von Mises distributions and utilize the nu-

merical solution provided by [Fisher 1993] for estimating the pa-
rameters in the model. Figure 7(a-b) illustrate the learned distribu-
tions of monitor and keyboard with respect to human pose in the
action node of “use computer on desk while sitting”.

Finally, we formulate the object-object relationship P(o, o′) in the
same way as in Equation 2, with a similar learning procedure. The
interdependencies between objects should not be treated equally;
we would like to extract “reliable” object-object relationships that
occur more frequently in the input instances. We compute the co-
occurrence frequency f(o, o′) of two objects o, o′ ∈ O, and object
pairs with f(o, o′) < 0.5 will be rejected from establishing the
object-object relationships. Figure 7(c-d) illustrate the learned dis-
tributions for two pairs of frequent relationships in the action node
of “use computer on desk while sitting”.

4.3 Creating action graph

We prefer the action sequence that drives the scene evolution to be
locally steady instead of totally random: two adjacent actions in the
sequence should share certain constituent objects, which roughly
approximates action progression in real life. For example, the ac-
tion “use laptop on desk while sitting” is more likely followed by
the action “read book on desk while sitting” (sharing desk) or “use
laptop on sofa while lying” (sharing laptop).

We construct an action graph for modeling the transitional proba-
bility between actions. The action graph G = (V,E) is a weighted
directed graph, where V is a set of action nodes, and E are edges
connecting all pairs of action nodes, including action nodes to them-
selves. An edge ei→j ∈ E directs from node ai to aj and carries
the transition probabilitywi→j , i.e., how likely action aj is to occur
after action ai. The transition probability is defined by

wi→j =
ŝij∑
j ŝij

, (3)

where ŝij is the correlation between two action nodes that is com-
puted by

ŝij =

{
1, if i = j;

max{sij , 0.5}, otherwise.
(4)

Here sij measures the overlap of the constituent objects of two ac-
tion nodes:

sij = δ(Ki −Kj) +

∑
o min{Ci(o), Cj(o)}∑
o max{Ci(o), Cj(o)}

. (5)

The first term is a Dirac delta function encoding the overlap of key
objects, which returns 1 if Ki = Kj , otherwise is of value 0. The
second term measures the similarity between two occurrence fre-
quencies Ci and Cj ; by considering C as a histogram over all con-
stituent objects excluding the key object, the denominator measures
the area of the “union” of two histograms, i.e., the sum of the max-
imum of each bin, while the numerator measures that of their “in-
tersection” histogram, i.e., the sum of the minimum of each bin.

With this formulation, the two nodes with no object category in-
tersection have the lowest transitional probability, whereas those
with many shared object categories have higher transitional proba-
bility. The resulting graph is a directed state diagram, and the bi-
directional transition probabilities are asymmetric (due to per node
normalization in Equation 3). Sampling over the graph produces a
Markov chain of human actions. The Markov assumption (“mem-
oryless” transition probabilities) generates a new action based on
the previous action instead of long-time causality relations – this
simplifies the sampling process.



4.4 Group actions

The action model discussed so far is limited to describing actions
involving a single person. Now we extend the model to handle ac-
tions involving multiple persons, i.e, group actions. To this end, we
classify the objects in a scene into two classes: exclusive objects
that are only affected by a single person action and shared objects
affected by multiple persons’ actions. We thus define a group action
model as AG =< {Ak}, Cs,Ds >, where {Ak} are constituent
single action models, Cs specifies the probability distribution of oc-
curring times for each shared object, and Ds describes the spatial
distribution of shared objects and all human poses.

In this work, we focus on a common indoor group action – “group
dining on table while sitting” with up to four people, denoted as
< {A, n}, Cs,Ds >, 2 ≤ n ≤ 4, where all single action models
{A} are identical, i.e., “dining on table while sitting”. We reuse
the single action model already learned for this group action, thus
the new tasks here are how to identify the shared objects from the
image instance and learn Cs and Ds from all instances.

We extract image instances of group dining from the COCO
database with group sizes of two to four. Ideally, we assume that a
shared object is equally distant from all persons that have access to
it. To automatically identify shared objects in each image, we first
compute the maximal human-human distance dh. Then for each
object o, we compute its distance to all persons, where the maximal
and minimal distances are denoted by dmax

o and dmin
o respectively.

After that, we identify a object to be shared if it is neither too far
away from nor too close to any person, which is quantified by the
following two conditions:{

dmax
o /dh < 2/3,

dmax
o /dmin

o < 2.
(6)

After collecting all instances for the group action node, the occur-
rence model Cs is analyzed for all the shared objects in the same
way as for constituent objects in the single-person action model.

We assume that the distances between modeled humans fall into
a certain range so that they can share objects, i.e., di,jh =
d(Hi,Hj) ∈ [a, b], where a = 0.6m and b = 2m for all ex-
periments in this paper. We further assume that the human-human
distance follows a uniform distribution over [a, b]:

P (di,jh ) =

{
1
b−a , a ≤ di,jh ≤ b,
0, otherwise.

(7)

Given the configuration of multiple human poses, a shared object o
must locate in the region defined by Equation 6, and its distribution
over that region follows the following uniform potential:

P(o, {H, n}) ∝ 1

dmax
o

. (8)

To construct the action graph with group action nodes, we use the
involved single action model for computing the transitional proba-
bility from or to a group action node, thus the introduction of group
actions demands no further change of edge weight computation in
the action graph.

5 Action-driven scene synthesis

Given the action graph learned from the annotated COCO images,
we are now ready to synthesize human actions to drive the evolution
of a scene. Our solution follows recent work [Fisher et al. 2012;

Fisher et al. 2015] and models human actions including group ac-
tivities to synthesize lively messy 3D indoor scenes.

Given an input scene with key objects, our method first adapts the
action graph to the input scene. Then it generates an action se-
quence by traversing the graph based on the node-to-node transi-
tional probability. The action sequence starts from a random action
node and ends with a user specified length. Note that the action
sequence driving the scene synthesis is not directly learned from
photos. Instead, each action sequence is an instance of the Markov
chain sampled from the action graph, which characterizes correla-
tions between action nodes. Finally, the scene evolution is real-
ized by exerting actions from the sequence in the scene one by one,
which triggers the insertion or relocation of involved objects, and
naturally leads to a messier scene at the end.

5.1 Graph adaptation

Our action graph is constructed from all types of actions learned
from the COCO database and covers actions for various types of
scenes: bedroom, kitchen, office room, etc. Applying it to a spe-
cific scene requires a preprocess of graph adaptation. That is, given
an input scene with key objects, we need to prune certain action
nodes if their key objects are missing in the scene. For example,
if silverware is not present in the scene, the action node of dining
could be on – the realization of this action will cause the insertion
of silverware; but if the dining table (key object) is missing, dining
should not be allowed to happen, because our action model relies
solely on the key object to place the human pose and therefore all
other constituent objects. After the graph adaptation, we also re-
move dangling edges connected to pruned nodes and update edge
weights in the adapted graph according to Equation 3.

5.2 Action realization

After an action is performed, the involved objects retain in the
scene. That means an action is performed in the context created
by all its ancestors in the action sequence. To realize a new action
A =< T ,K,H; C,D > from the sequence, we first place the hu-
man pose H into the scene w.r.t. the key object K; then collect the
set of active objects O (involved in A) by sampling the occurrence
model C and place them in the scene such that their spatial layouts
follow the distributionsD; finally, we relocate non-active objects Õ
(not involved in A) so that they do not obstruct the current action.

Fitting human pose (H). The human pose H of an action is al-
ways in contact with the key object K as per our assumption on
their mutual relationships. If it is an on-relationship, we randomly
sample a location and orientation to place the human skeleton on
the supporting plane of the key object, then locally adjust its loca-
tion so that the pose can physically fit onto the key object. For the
around-relationship, instead, we first randomly sample a location
that is horizontally around the key object, and an orientation ac-
cording to the learned angular distribution P(H,K) of human pose
w.r.t. the key object; then we place the human skeleton subject to
collision rejection detection. If the scene contains multiple copies
of K, we randomly choose one for placing the human pose.

Placing active objects (O). Given the human pose and key ob-
ject of the action, we need to figure out the set of constituent objects
O to be inserted, as well as their locations and orientations in the
scene. First, we generate the set of constituent objects according
to the learned occurrence model C. For the active objects that have
been in the scene, we have two options – either reuse it or insert a
new one. We predefine an upper bound for the occurrence times of
each object category in the whole scene. For example, a scene can



contain at most one monitor, one keyboard, but two coffee mugs,
ten books. New objects are inserted into the scene before their time
of occurrence reaches the upper bound; otherwise, we only allow
reuse of objects for realizing new actions.

We then place these objects one at a time in order of descending
occurrence probability and size in the second step. The placement
of an object o ∈ O follows the preference density function:

f1(o) = L(o) ∗ S(o) ∗ P(o). (9)

The collision penalty term L(·) enforces no physical collision be-
tween objects; L(o) = 0 if o collides with any other objects in
the scene, and is of value 1 otherwise. The overhang penalty term
S(·), similar to that in [Fisher et al. 2012], prevents o from hang-
ing off the edge of a supporting surface. We project the bounding
box of o onto the supporting surface and compute the intersection
area A(o) between the projection and the supporting region. Pre-
cisely, S(o) = 1 if A(o) ≥ 0.5, otherwise S(o) = 0. That says
the placement of o is not plausible if more than half of its volume
hangs off the supporting surface. The last term P(o) combines the
spatial layouts of o w.r.t. both human pose and other objects:

P(o) = P(o,H) +
∑
o′

f(o, o′) ∗ P(o, o′), (10)

where P(o,H) and P(o, o′) are the object-human and object-
object distributions, respectively, f(o, o′) is the co-occurrence
probability of (o, o′), and o′ ∈ O is the object that has been placed
in the scene with f(o, o′) > 0.5.

Note that the positioning of o so far is still in the human centric
system, which might generate a 3D location floating in the air. To
make the synthesized scene physically plausible, we move o verti-
cally until it reaches the closest supporting surface of either a key
object or the floor. A sampling strategy is utilized in the placement
procedure to ensure a balance between the diversity and the plau-
sibility of object configuration. In our implement, we uniformly
sample k = 2, 000 locations and select the one that maximizes the
score defined in Equation 9 as the final position for an object. To de-
termine the orientation of an object o, we manually specify a facing
direction for o w.r.t. human. Each placed object is rotated horizon-
tally so that its facing direction pointing to the human center.

Placing non-active objects (Õ). To relocate a non-active object
õ ∈ Õ, we must consider two more constraints besides the collision
and hanging-off rejections. First, õ must not obstruct the current
action. We define a working zone for the current action and keep õ
from that region. In our experiments, the working zone of an action
is defined as the convex hull of its human pose and constituent ob-
jects with occurrence frequency greater than 0.5. Second, the new
location of õ should be as close to its original location as possible.

Similar to active objects, we insert objects in Õ into the scene one
at a time in the order of descending object sizes. For each object
õ ∈ Õ, we uniformly sample k = 10, 000 positions, and select the
optimal location that maximizes the following score:

f2(õ) = L(õ) ∗ S(õ) ∗W(õ) ∗ exp(−∆(õ)). (11)

The first two terms, L(·) and S(·), are the same as that in Equa-
tion 9. The third termW(·) = 1 if õ falls outside of the working
zone; otherwise, W(·) = 0. The ∆(õ) in the last term measures
the distance of shift of õ from its original position.

We allow the placement algorithms for O and Õ to roll back to the
previous object, modifying its placement in seeking of a relaxed so-
lution, if the placement of the current object fails up to a prescribed

number of times (set to 2,000 in our current implementation). Given
the fact that single action models are rarely cluttered by constituent
objects, the roll-back procedure always successfully places active
objects O in all experiments. However, non-active objects Õ will
keep accumulating as an action sequence proceeds. At a certain
point, it becomes impossible to place all the non-active objects on
a valid supporting surface. Further options in this scenario include
stacking them vertically or placing them on the floor; both options
occur naturally in messy scenes.

5.3 Realizing group action

The realization of group action < {A, n}, Cs,Ds > is a hybrid
process. We first place multiple persons around the key object fol-
lowing the human distribution; second we generate a set of shared
objects according to the occurrence model Cs and place them ac-
cording to the spatial distribution of shared objects; third, we apply
the single person action modelA for each person to place exclusive
objects belonging to each single action; lastly, to place non-active
objects, we additionally include all persons and shared objects for
computing the working zone of the current group action.

We place human poses into the scene one at a time. The first human
pose is randomly placed around the key object. Suppose k human
poses have been placed, the location of the (k + 1)-th human pose
must also be around the key object, as well as obey the distance
constraint in Equation 7 to all other k human poses. This procedure
stops until the group size reaches four or no further human pose can
be placed, which leads to groups with size of 2 and 3.

Given the set of shared objects, we place them one at a time in
order of decreasing object size. For each shared object o, we uni-
formly sample 2,000 locations and select the placing location that
maximizes the following score:

f3(o) = L(o) ∗ S(o) ∗ R(o) ∗ P(o, {H, n}), (12)

where L(·) is the collision penalty, S(·) is the overhang penalty,
R(o) is a binary indicator of whether o falls in the sharing region
specified by Equation 6, andP(o, {H, n}) is the spatial distribution
potential of o; see Equation 8.

6 Results and evaluation

In this section, we present results of action-driven scene evolution
and compare the results, through user studies, to those created by
an artist, and those by the most closely related methods for human-
or activity-centric scene modeling [Jiang et al. 2012; Fisher et al.
2012; Fisher et al. 2015]. We also demonstrate the capability of our
method to synthesize messy scenes at larger scales.

Action data and graph. Action learning is conducted exclu-
sively over 1,216 annotated photographs, 936 of which are from
the Microsoft COCO database [Lin et al. 2014]. The remaining
photos were collected on-line to enrich or complement action data
extracted from COCO. The photos were all annotated with embed-
ded human poses as well as action and object labels. It takes less
than 30 seconds to mark all the joints for one human in a photo.
An unlabeled on-line photo typically takes less than three minutes
to annotate using LabelMe for a scene with 5-10 objects. For our
experiments, the learned action graph is a complete graph (with
self-loops) composed of 20 nodes and covering 8 types of actions.
After annotating all the photos, action learning and graph construc-
tion take about 8 minutes in total to complete.

3D scene evolution. Figure 14 (also see Figures 1 and 8) shows
a gallery of 3D scene evolution results that highlights the various



features offered by our method. Timing-wise, sampling an action
from our action graph takes on average 0.1 second and object place-
ments take on average 1 second.

In each row of Figure 14, the action sequence is probabilistically
sampled from the learned action graph and applied to the initial
scene in order. Applied actions are indicated in the figure, with
zoom-in views to better visualize the insertion and relocation of
objects. The two final rows in the figure show how actions involving
working and dining learned from bedrooms and living rooms can be
transferred to never-seen scene categories such as dining halls and
computer labs to create quite a mess. It should be reiterated that the
mess is purely the result of action-driven scene evolution, starting
from a clean initial scene. The work of Fisher et al. [2015] was
able to show the modeling of messy 3D scenes when depth scans of
cluttered scenes are given as input.

Instead of probabilistically sampling the action graph, our work
easily supports user-guided scene evolution where a user drives the
process by iteratively selecting from a set of probable actions sug-
gested (in the order of decreasing probabilities) by the action graph.

Group actions. Figure 8 contrasts scenes synthesized via group
actions to those generated by applying a “baseline” method mainly
involving single-person actions. In both cases, we first sample from
a distribution of persons based on the same initial scene. For group
actions, we sample and place a set of shared objects learned from
photos of group actions. Then for each person in the group, we
apply a single-person action model to place additional objects into
the scene. For the baseline method, the shared objects are randomly
assigned to persons in the group, then we apply a series of single-
person actions to place all the objects including the shared ones.

It is interesting to observe that the placements of wine glasses ap-
pear to be more distant from the chairs (where persons using the
wine glasses would sit), compared to the bowls and folks. Upon
close examination of the data source, the wine glasses in the photos
do generally appear relatively far from the chairs where people sit.
This is likely due to the fact that people holding wine glasses tend
to move around in the room.

To assess the plausibility of our learned group action model, we
prepared 6 pairs of scenes like the ones shown in Figure 8, using
our group action model and the baseline method described above.
We then asked 24 human participants to select, one out of each pair,
the scene they believe to “appear more like a scene during or after a
group of people having a meal together”. The participants selected
the scenes generated by our group action model 75% of the times.

6.1 Plausibility tests against artist

A key evaluation for our method is whether the results from action
learning and scene generation are plausible. Similar to previous
works [Fisher et al. 2015], we leave such judgments to human sub-
jects. We ask users to give a score from 1 (least plausible) to 5 (most
plausible) to a generated scene based on two criteria: plausibility,
the scene is a plausible result after a given action is performed on
an initial scene; and naturalness, the scene looks natural.

Object placement test (OPA). To compare our results to human-
generated scenes, we hired a professional artist to manually create
scenes based on given actions. When asking users to rate scene
plausibility, we found that providing them with more contexts with
which to make judgements is more likely to gather more reliable
feedback. Therefore, for each initial scene and a given action, in-
stead of providing only a pair of scenes to rate, we provide five
scenes: three synthesized by our method with random initializa-
tion, and two scenes created by the artist. In each case, the same

(a1)

(a2)

(b1)

(b2)

Figure 8: Two scenes synthesized from a group action “group din-
ing” (bottom) vs. those by a baseline method (see text) mainly in-
volving single-human actions for dining (top). Both syntheses start
with the same initial scene and place the same set of objects. No-
table distinctions can be observed for the placements of the large
fruit bowl, which is a shared object.

Figure 9: Overall average user ratings for scene plausibility test,
when comparing our results to scenes created by an artist and to
scenes created by closely related works.

set of objects were inserted or relocated. The five scenes, randomly
ordered, make up one query for the Object Placement test against
Artist or OPA, for short. Our user study consists of 20 OPAs cov-
ering 10 actions. With 28 human participants working on the OPA
test, we gathered a total of 140 user ratings.

Figure 9 (left) plots the overall average user rating for the artist’s
results and our results from the OPA test. Per-action average ratings
are plotted in Figure 10. Our results received an average rating of
3.46, which approaches closely to that of the artist (3.83). If we
take the best out of our three results from each OPA query, then the
(best-of-3) average rating goes up to 4.29 and is higher than artist’s
average rating, indicating that our method is able to produce results
no worse than an average artist in the best scenario.

Scene evolution test (SEA). We scale up the OPA test to scene
evolution involving multiple actions. Each Scene Evolution test
against Artist, or SEA, consists of two sequences of scenes evolved
using our method via probabilistic sampling of the action graph and
one sequence of scenes created by the artist using the same action
sequence, all with the same initial scene and same set of objects.
Three evolution steps are applied for each initial scene and the SEA
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Figure 10: Per-action OPA test results: comparison to scenes cre-
ated by an artist in terms of average user ratings. Along the x-axis,
the 10 actions are: “use computer on desk while sitting”, “use
laptop on desk while sitting”, “use laptop on coffee table while sit-
ting”, “use laptop on bed while lying”, “read book on desk while
sitting”, “eat snacks on coffee table while sitting”, “read book on
coffee table while sitting”, “read book on bed while lying”, “eat
dinner on table while sitting”, “watch TV on sofa while sitting”.
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Figure 11: Per-action-sequence SEA test results: comparison to
scene evolutions created by an artist, over 9 initial scenes and ac-
tion sequences.

test covers 9 initial scenes. A total of 29 human participants rated
for the SEA test. For each query, the participants were asked to
rate the overall plausibility of each of three scene sequences. The
overall average and per-action-sequence average ratings are shown
in Figures 9 (middle) and 11, respectively.

The average and best-of-2 average ratings for our scene evolution
results are 3.35 and 3.90, respectively, while the average rating for
the artist’s results is the highest, at 4.14. Artist’s performance in
SEA appears to be superior than that in OPA. This may be partly
attributed to the artist’s ability to take into account of subtle ob-
ject movements between action transitions – movements that our
current action model does not accommodate. For example, we ob-
served that the artist would move a chair to the side before having
the human in action get up from the chair after dining to watch TV.

6.2 Comparisons to closely related works

Among all the previous works on 3D scene modeling, the example-
based synthesis method (F1) of Fisher et al. [2012] is the closest to
our work in terms of end goal: both aim to develop an open-ended
tool to synthesize 3D scenes, but take different routes to achieve
the goal. Judging by modeling methodologies, the works by Jiang
et al. [2012] (J1) and Fisher et al. [2015] (F2) come the closest as
they both take a human- or activity-centric approach. All of these
works, including ours, are data-driven. However, F1, J1, and F2 all
learn from 3D scene exemplars, we learn from annotated photos.

CK-1 CK-2 LS-1 LS-2 D-1 D-2 Average
J1 2.43 2.33 3.53 4.13 2.77 2.77 3.00±0.09
F1 3.20 2.77 2.27 2.07 3.17 2.50 2.66±0.09
F2 3.73 3.77 3.27 3.40 2.87 2.60 3.27±0.10
Ours 3.08 2.95 3.30 4.07 3.97 3.38 3.46±0.06

Table 1: Numerical average user ratings for the OPO test, for three
actions and two initial scenes and object replacements per action.
The three actions are: CK = “use computer on desk while sitting”;
LS = “use laptop on coffee table while sitting”; D = “eat dinner
on table while sitting”.
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Figure 12: OPO test results on 6 queries: comparison to three
related works in terms of scene plausibility. Along the x-axis, the
actions are “use computer on desk while sitting”(Q1, Q2), “use
laptop on coffee table while sitting”(Q3, Q4), and “eat dinner on
table while sitting”(Q5, Q6).

In terms of scene synthesis capabilities, neither F1 nor F2 was de-
signed to obtain a fine-grained scene evolution. Both J1 and our
work can progressively alter a scene; their capabilities depend on
the generative models developed and richness of data utilized. We
present head-to-head comparisons to the three methods, via a user
study to rate the plausibility of the generated scenes.

Since the compared methods perform learning from different data
sources, which would influence object category occurrence, we
only compare the plausibility of object placement where the set of
objects placed are the same, as in the OPA test. Also, only single-
frame object placements are compared since the other three meth-
ods were not all designed for scene evolution. Given an action ap-
plied to an initial scene, the four scenes resulting from J1, F1, F2,
and our method make up one query in the Object Placement test
against Other methods or OPO, for short. Human participants are
asked to provide plausibility scores for these queries.

The actions selected for the OPO test are “use computer on desk
while sitting”, “use laptop on coffee table while sitting”, and “eat
dinner on table while sitting”, which contain common object cat-
egories whose placements have been learned by all four methods.
For each initial scene, the arrangements of essential furniture pieces
are provided to assist J1 and F2 in pose or activity prediction. Then
for J1, the same objects are placed with both human and object con-
texts learned from 3D example scenes in which the placements of
a set of daily objects are labeled by users. Although F2 is designed
for functional scene modeling from depth scans, its activity model
is capable of placing objects without constraints from the scans.
We asked the lead author of F2 to produce results for the tested
actions and specified objects, conditioned only on given furniture
pieces to ensure a fair comparison. For F1, we used the scenes
generated by the artist from previous tests as the input examples
for their example-based synthesis. The final scenes are synthesized
by applying the necessary object placements, as guided by the in-
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Figure 13: Additional comparisons among the four methods in
terms of scene plausibility. Left: the number of times our method
was rated higher (green) or lower (red) than other methods in the
OPO test, respectively. Right: the percentage of each method being
rated as the best (green) or the worst (red) among all.

put scene examples and scenes in the 3D scene database from the
original paper.

For each of the three actions selected for the OPO test, two object
placements are performed by all four methods. Thus, there are six
OPO queries in total. The user study involved 30 human subjects
to provide a total of 180 ratings. Table 1 summarizes the OPO test
results, including average user ratings for each scene-action combi-
nation. The last column shows the overall averages and the standard
deviations of the ratings. The numbers indicate that in the OPO
test, our action-driven method outperforms all of the three methods
compared. Significance tests also show that the performance gains
are statistically significant. Figures 9 (right) and 12 visualize the
numbers given in Table 1.

Test results in Figure 12 show that our method performed best for
the action “eat dinner on table while sitting”, which involves multi-
ple small items. The likely reason is that our action model considers
human-object relations as well as relations among multiple objects,
e.g., the bowls and utensils, while both J1 and F2 focus on pairwise
human-object relations. For the action “use computer on desk while
sitting”, F2 received the highest scores. This may be attributed to
the semantic human-object relations that can be learned from their
3D scene data possessing semantic annotations, e.g., monitor is not
blocked for visibility, keyboard and mouse need to be touchable.
On the other hand, our action model learns the human-object distri-
butions only with spatial constraints from photos.

In Figure 13, we show additional comparison results, including
head-to-head ratings. These results consistently demonstrate the
advantage of our method from different perspectives. Note that all
the human subjects in our user studies are graduate students in the
fields of computer science and engineering.

7 Discussion, limitation, and future work

Our ultimate goal is to automatically synthesize truly messy yet
realistic 3D indoor scenes, a task we believe no current work has
been able to come close to achieving. In reality, scenes are messed
up by our daily actions, not a probabilistic scene/sub-scene mixing.
In addition, a mess is hardly something that can be properly learned
from limited exemplars as the messiness is expected to be highly
varied and unpredictable. In our work, we propose an action-driven
approach with a progressive layout scheme, which we call a scene
evolution. Furthermore, we believe that the data source ought to
come from images since so far, only images possess the richness
and variety to allow the synthesis of truly messy scenes.

The method we have presented only represents a first attempt at
executing the above ideas. Yet, the action model we develop and
apply, as well as action extraction and learning from annotated
photographs, offers unique features which set our approach apart
from previous works on human- or activity-centric 3D scene mod-
eling [Fisher et al. 2012; Jiang et al. 2012; Savva et al. 2014; Fisher
et al. 2015; Savva et al. 2016]. Even with the various simplifying

design choices in our work, comprehensive user study results posi-
tively support the action-driven approach in terms of its generative
capabilities and plausibility of the generated scenes, as compared
to human effort and state-of-the-art data-driven methods. That said,
the action-driven approach should only complement and not replace
other scene modeling paradigms. We also reiterate that the success
of any data-driven approach relies heavily on the quantity and qual-
ity of its data. What our approach can accomplish is still limited by
having only a handful of action types to work with.

Scene synthesis at two scales. An important lesson from our
current pursuit is that indoor scene generation is inherently a pro-
cess that ought to operate at two scales. At the coarse scale, one
is concerned with how to layout large furniture pieces such as beds
and sofas. How a human sits or lies on a sofa does not play a major
role in its placement in a room. The layout problem is more suited
for a rule-based approach [Merrell et al. 2011], since in reality, it
is mainly guided by design guidelines and functionality consider-
ations. The movements or arrangements of small, mobile items
are naturally tied to human actions. There are also passive actions
such as watching TV, which do not involve moving an object but
may trigger an object insertion. The action-driven approach is best
suited for scene synthesis at such finer granularity level.

In our current implementation, the initial 3D scene is expected to
contain large, fixed furniture pieces, which would serve to initialize
applicable actions. However, this assumption could be lifted if we
allow special handling of the first actions when the initial scene is
completely empty. In general, we can allow certain actions to be
entirely conditioned on the scene category. For example, watching
TV is always applicable to a living room, empty or not.

Pattern-driven vs. action-driven. Arranging small objects over
a relatively small workspace such as a shelf or desk is action-driven,
but the relevant actions are difficult to capture and annotate from
depth scans [Savva et al. 2014] or photographs. Since these kinds of
arrangements typically exhibit predicable patterns, pattern-driven
syntheses have been successful, where the patterns are rule- or
style-based [Majerowicz et al. 2014] and can be learned from exam-
ples [Fisher et al. 2012]. On the other hand, messed-up rooms after
a party or kids play would hardly share common statistical prop-
erties or reveal predictable patterns. An action-driven, progressive
approach is more befitting to the modeling of such scenes.

Static vs. dynamic action data. Our action model is learned
from static photos showing snapshots of human-object and object-
object relations. Without capturing dynamic transitions between
actions, we currently assume that the transition probability from
one action to others can be estimated by the correlation between
actions; see Equation 3. Such a substitution of transition probabil-
ities by correlations between action models is a limitation which
could be lifted if dynamic action data, e.g., video or RGBD motion
data [Savva et al. 2014; Savva et al. 2016], can be utilized to study
the transition probabilities. Then the learned model can be adapted
to our action graph to drive the scene evolution.

Technical limitations. The main technical limitations arise from
various difficulties in action learning from photos. Pose recovery
from photos is challenging, especially from non-iconic photos of
COCO. Even with manual annotations of joints for 3D pose recov-
ery, the reconstructed 3D poses still may not be plausible. Similarly,
object-human and object-object spatial relations learned from pho-
tos can be inaccurate due to erroneous camera projections and view
angles. That said, these problems have all been intensely studied
in the field of computer vision and there are many available tech-
niques, e.g., those based on deep learning, that can be applied to
alleviate the issues with our current implementation. Complemen-



tary to this, efforts can be made to acquire more meaningful photos
which enrich the action data while facilitating action learning.

Future work. The set of action types we learn and apply in this
paper were hand-picked from the COCO database; they are clearly
limited. To fully realize the potential of action-driven scene anal-
ysis and synthesis, a lot more action data should be acquired and
prepared. To extend the effort to a much larger scale, action data
should ideally be mined first from large text and image sources in a
future pursuit. If we are able to obtain much more action data with
text annotations, then we would not be far from achieving 3D scene
scene evolution from textual instructions [Savva et al. 2016]. Also,
our current object placement scheme can be enhanced with more
advanced geometric and even functional analysis of 3D objects [Hu
et al. 2016]. A final interesting thought would be to reverse the
scene evolution: instead of going forward in time from an input
scene, reconstruct a plausible scene sequence backward in time so
that the sequence would lead to the input scene.
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Figure 14: A gallery of our action-driven 3D scene evolution results. The figures and annotations should be self-explanatory. Sub-scenes
enclosed in green ellipses are zoomed in below the scene sequence for better visualization. Last two rows show how actions involving
laptop or computer use and dining, which were learned from small-scale bedrooms and living rooms from Microsoft COCO photos, can be
transferred to never-seen scene categories such as a computer lab and a dining hall to create quite a mess.


