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Abstract
The word “style” can be interpreted in so many different ways in so many different contexts. To provide a general
analysis and understanding of styles is a highly challenging problem. We pose the open question “how to extract
styles from geometric shapes?” and address one instance of the problem. Specifically, we present an unsupervised
algorithm for identifying curve styles in a set of shapes. In our setting, a curve style is explicitly represented by a
mode of curve features appearing along the 2D silhouettes of the shapes in the set. Unlike previous attempts, we
do not rely on any preconceived conceptual characterizations, e.g., via specific shape descriptors, to define what
is or is not a style. Our definition of styles is data-dependent; it depends on the input set but we do not require
computing a shape correspondence across the set. We provide an operational definition of curve styles which fo-
cuses on separating curve features that represent styles from curve features that are content-revealing. To this end,
we develop a novel formulation and associated algorithm for style-content separation. The analysis is based on
a feature-shape association matrix (FSM) whose rows correspond to modes of curve features, columns to shapes
in the set, and each entry expresses the extent a feature mode is present in a shape. We make several assumptions
to drive style-content separation which only involve properties of, and relations between, rows of the FSM. Com-
putationally, our algorithm only requires row-wise correlation analysis in the FSM and a heuristic solution of an
instance of the set cover problem. Results are demonstrated on several datasets showing the identification of curve
styles. We also develop and demonstrate several style-related applications including style exaggeration, removal,
blending, and style transfer for 2D shape synthesis.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Curve, surface, solid, and object representations

1. Introduction

It seems possible to speak of styles of all human designs and
endeavors. The elegance and distinctiveness of styles draw
our attention to them, making them interesting subjects of
study. Styles in speech, writing, arts, fashion, architecture,
etc., are constantly analyzed, imitated, and invented [Ken82,
LRF04,Chi07]. In this paper, we are interested in an analysis
of styles pertaining to the geometry of shapes.

The open question we pose is “how to extract styles from
shapes?” Even when confined to a study of shape geometry,
the notion of style can still be interpreted in so many differ-
ent ways and contexts that it is likely impossible to provide
an analysis of all styles of all shapes. In this paper, we are
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interested in shape styles that are local and visually explic-
it. Specifically, we focus on curve styles, styles of a shape
that are explicitly revealed in certain segments of its exterior
2D silhouette, e.g., see Figure 1. Silhouette curves are high-
ly effective in conveying shapes and various shape styles are
well presented in the silhouette profiles. Moreover, curves
are easy to parameterize with simple boundaries to facilitate
blending and stylized shape synthesis.

Our specific question then is “how do we judge whether
a curve segment represents a style or not?” A supervised
learning approach would rely on training data to provide a
collection of style examples and resort to pattern matching
to identify styles in test shapes. In this paper, we would like
to perform style analysis in an unsupervised setting. This is
more challenging since there is no prior knowledge about the
styles being sought. Furthermore, we believe that it would
be difficult, if not impossible, to provide a general conceptu-
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Figure 1: Curve style analysis in a set of shapes. (a) Input set with diverse content and style. (b) Extracted curve features
clustered into feature modes. (c) Construction of feature-shape association matrix (FSM) whose rows are consolidated feature
modes and whose columns correspond to the set of shapes. (d) Style-content table resulting from style-content separation. (e)
Style transfer applied to fill the blanks.

al or theoretical definition for curve styles, i.e., a definition
that precisely characterizes the “intrinsic essence” of curve
styles. In particular, when a curve feature is given in isola-
tion, one can hardly judge whether it is a style curve or not.
However, when the feature is presented in context one may
be able to make better judgements. In this paper, we aim
for an operational definition [STL04] of curve styles that is
data-dependent. That is, we define whether a curve segment
represents a style or not in the context of a set of extracted
curve segments and identify the style segments by a com-
putational process, the operation, that separates styles from
non-styles.

Our operational definition of curve styles is built on sever-
al basic premises. First, a stylistic curve segment should be
an interesting feature in its own right. Correspondingly, our
style analysis starts with feature extraction. Second, a broad-
er context is needed to judge whether a curve feature repre-
sents a style or not. In this work, we utilize a set of shapes
as input and identify styles from a set of detected curve (seg-
ment) features. Third, and most important, given the curve
features extracted from the set of shapes, the focus of our
operational definition is on style-content separation.

We classify the curve features into style-revealing,
content-revealing, and background features. Similar to our
treatment of curve styles, we do not rely on any hard-coded
list of characteristics to identify content. Rather, we rely on
an algorithm to separate style features from the content and
background features. We only require that curve content can
be revealed by curve segments as well.

We develop a novel formulation and associated algorithm
to perform style-content separation over a set of curve fea-
tures extracted from a set of shapes. The analysis is based on
a feature-shape association matrix (FSM) whose rows cor-
respond to modes of curve features, columns to shapes in
the set, and each entry expresses the extent a feature mode
is present in a shape; see Figure 2 for an example. Note that
a feature mode is nothing but a group of similar curve (fea-

ture) segments. Each row of the FSM then corresponds to a
style feature, a content feature, or a background feature.

We make several assumptions (Section 2) to guide our
style-content separation. The assumptions only involve
properties of, and relations between, rows of the FSM. Com-
putationally, our algorithm only requires row-wise correla-
tion analysis in the FSM and a heuristic solution of an in-
stance of the set cover problem.

Related works. Most works on style-content separation
have followed the supervised learning approach and are

Figure 2: Humans can easily spot curve styles from a set of
shapes. In an unsupervised setting, a machine only sees the
association between shapes and extracted low-level features,
shown as a seemingly random matrix on the left. Our style-
content analysis operates purely on such a matrix and dis-
covers the patterns therein which reveal both contents (top
three rows in the second matrix) and styles (rows which fol-
low with a few styles shown on the right).
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based either on parameterized models [TF00, WFH07] or s-
tatistical modeling using PCA [BV99, BH00]. Both types of
methods require correspondence across the input set, which
is difficult to compute, and the shapes must belong to the
same class. The resulting styles are global and latent in na-
ture; the styles we identify are local, decorative, and visual-
ly explicit. Our analysis is unsupervised; it does not require
correspondence and operates across contents.

The recent work of Xu et al. [XLZ∗10] on style-content
separation is unsupervised and correspondence-free, like
ours. The two works both produce a style-content table and
perform style transfer to fill blanks in the table. However,
their work is designed for a specific shape style given by
part scales. In our work, the styles are unknown and must be
discovered through set analysis.

There has been a large amount of work on mining fre-
quent [HCXY07] or unusual [KNT00] patterns in a set. The
styles we identify are judged neither by their frequency nor
by them being outliers. Past works on curve styles includ-
ing [HOCS02, FTP03] learn the styles from a given set of
curves for stylistic line drawings. In contrast, our work fo-
cuses on curve styles of a set of silhouette contours.

There has been a tremendous amount of work on content
analysis of shapes, particularly for shape retrieval [TV08].
In all of these works, shape contents are characterized by
certain shape descriptors. Our curve feature extraction, clus-
tering, and the use of the FSM may remind one of the “bag
of words model” (BoW model) in computer vision [FF-
P05], which has been widely used for object recognition, im-
age classification, and more recently, 3D shape retrieval [B-
BOG11]. Our work extracts shape features, but differs sig-
nificantly from previous works on BoW model in the way
these features are utilized as well as the target problem. Our
work does not address the shape classification or discrim-
ination problem. The histogram of curvature descriptor is
applied only to group similar curve segments per shape to
construct the FSM, not to classify or recognize shapes.

Most recently, Doersch et al. [DSG∗12] extract image fea-
tures that best characterize the city of Paris. One can con-
sider this work to be also about style analysis, namely, it
attempts to identify the distinctive styles of Paris, in the for-
m of local image features. The same methodology should
be applicable to characterize other distinguishable image or
shape classes. However, their analysis technique is super-
vised, with a clear goal of identifying characteristic local
features.

Contribution. Our main contribution is a novel formula-
tion based on FSM analysis and an associated algorithm for
style-content separation. The style-content analysis leads to
an unsupervised method for extracting curve styles from a
set of 2D shapes. Our analysis does not rely on any shape
descriptors or other conceptual characterizations to define
curve style or content; it also does not require any shape

correspondence across the set. It allows for the handling of
shapes across content classes and possessing generic curve
styles, as long as the styles are visually explicit, local, and
decorative in nature. In addition to showing our algorithm’s
ability to identify curve styles in a set of shapes, we also
demonstrate that the identification of curve styles facilitates
several style-related 2D shape modeling tasks.

2. Assumptions

In general, a curve style or content is not specific to one
curve segment but may be shared by several segments.
Hence we cluster extracted curve features from the input
set of silhouettes to form what we call the feature modes.
Each feature mode can be content-revealing, style-revealing,
or neither, e.g., it is a background feature. In Figure 2, for ex-
ample, the curve features (showed in red) in each green box
belong to one feature mode, revealing either style or content.
A baseline assumption we make on the input set is:

I: The input set contains diverse and significant contents, as
well as diverse and significant styles.

This is translated into a consideration on the number of
shapes in the set that are “covered” by a content-revealing
or style-revealing feature mode. This number can be nei-
ther too large (not diverse) nor too small (not significan-
t). This assumption leads to a pre-filtering of background
features, and is also used for content identification. Here
we say a shape is covered by a feature mode if some seg-
ment belonging to the feature mode appears in the shape.

Without any training data or other prior knowledge to in-
dicate what is style and what is content, it is difficult for a
machine to separate the two types of features. Unlike hu-
mans, a machine only “sees” the subsets of shapes that are
covered by the various feature modes. Our goal is to allow
the machine to extract curve styles based solely on this in-
formation. To this end, we make three more assumptions on
the input set:

II: Each shape in the set belongs to a unique content class.

This is a weak prior. An equivalent way of stating it is
that the subsets covered by the curve contents form a non-
overlapping partition of the input set. We do not assume
the same coverage property on style features. For exam-
ple, a shape in the set can be style-less.

III: There are more style features than content features in the
input set.

This is perhaps the most debatable assumption among all.
The intuition behind it is that in a sufficient large set of
shapes, styles should be expected to be more distinctive
than contents. This distinctiveness is correlated to the fea-
ture count. The more the features are, the more distinctive
each feature is. It is certainly possible for this assump-
tion to be broken, which may lead to a confusion between
what defines style and what defines content. However, the
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other assumptions would still allow us to separate the t-
wo classes of features. The binary decision of which class
is regarded as style can be made according to additional
criteria.

IV: Style and content tend to be uncorrelated.

To be more precise, note that in our formulation, a style
or content is represented by a row in the FSM. Then the
above assumption can be restated as: two rows where one
represents a style and the other a content have low cor-
relation; see Equation (3) for the definition of correlation
we adopt. This assumption is reminiscing of the classical
notion of style-content separation [TF00] which consid-
ers styles as orthogonal to content. Also, the assumption
is consistent with the observation that styles often cross
content class boundaries in real-world datasets.

It is important to note that none of the above assumptions
provide a conceptual definition of what a style or a content
feature is. We do not believe it is possible to offer such def-
initions in general without raising objections since it is too
subjective of a matter and depends on the application contex-
t. All our assumptions speak of properties of, and relations
between, subsets covered by the feature modes. We show in
Section 5 that style-content separation is achievable under
these assumptions.

3. Overview

The input to our algorithm is a set of 2D shapes represent-
ed by their silhouettes. Our analysis only accounts for exte-
rior silhouettes; interior contours or holes in the 2D object
representations are ignored. To model content and style cov-
erage of the set of shapes, we introduce the feature-shape
association matrix or FSM whose rows correspond to fea-
ture modes, columns to shapes in the set, and each entry ex-
presses the extent a feature mode is present in a shape. Our
algorithm proceeds in three steps (see Figure 1):

1. Per-shape feature extraction: For each shape, we ex-
tract a set of feature curve segments and then cluster them
to remove redundancies caused by curve similarity, noise,
and in particular, repetition of curve patterns. Note that
curve styles tend to contain such pattern repetitions. The
result of this step is a set of feature modes per shape.

2. Feature mode consolidation and FSM construction:
We form the initial FSM by defining its rows using the
per-shape feature modes. By definition, the FSM reveals
the extent each feature mode appears in other shapes in
the set as well. We consolidate the set of feature modes by
clustering them based on correlations among the rows of
the initial FSM. Each cluster of highly correlated rows is
condensed via simple averaging into a single row repre-
senting a feature mode across the set of the shapes. These
feature modes form the rows of the new consolidated F-
SM for style-content analysis.

(a) (b)

Figure 3: Per-shape curve feature extraction. (a) 16 curvature
extrema (red dots) are detected along the contour of a knife,
which are later used to extract 93 curve segments. (b) 13
per-shape feature modes are generated by clustering all these
curve segments.

3. Style-content separation: From the FSM, we filter back-
ground features using Assumption I, identify content fea-
tures, and finally extract style features.

a. Content identification: We define content features as
the set of rows in the FSM whose covered subsets for-
m the smallest (in number) non-overlapping partition
of the whole set of shapes. In Section 5, we provide
arguments to justify this definition.

b. Style identification: Having identified the content
rows in the FSM, we sort the remaining rows accord-
ing to their correlation with the content rows. Based
on Assumption IV, rows having low correlations are
identified as style features. Any leftover background
or content features are filtered out as well.

The outcome of the analysis is a separation between styles
and contents identified from the input set, resulting in a style-
content table. Each row in the table represents a detected
curve style and content groups are arranged into columns;
see Figure 1(d). The table allows for style transfer for the
synthesis of new stylized shapes, as shown in Figure 1(e)
and Figures 14-16. We also describe and demonstrate sev-
eral other style-related applications including style removal,
blending, and exaggeration.

Again, it is important to note that our style-content anal-
ysis does not need any shape correspondence between the
input shapes; this is unlike most previous works developed
for style-content separation.

4. Feature analysis

In this section, we describe how the curve feature modes are
extracted from the input set of silhouette contours and then
consolidated to form the FSM for style-content analysis.

Per-shape curve segment extraction. We start with intra-
shape feature extraction to obtain a set of curve segments
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Figure 4: Shape distributions (100 bins) and curvature his-
tograms (20 bins) are used to define the dissimilarity mea-
sure among curve segments (highlighted in red on the left).

per input silhouette. Along a given silhouette, we estimate
curvature and return all curve segments delimited by a pair
of curvature extrema, but with a length upper bound set at
half of the length of the entire contour (see Figure 3a). Since
the input silhouette curves from our test sets are generally
quite clean, we estimate curvatures using discrete finite dif-
ferences. In the case of noisy curves, more robust curvature
measures such as integral invariants are more appropriate.

Per-shape feature modes. Given the set of curve segments
obtained for each shape, we cluster them to remove redun-
dancies caused by curve similarity, noise, and in particu-
lar pattern repetition. The result is the initial set of feature
modes, one per cluster per shape (see Figure 3b).

The clustering scheme we employ is the complete link-
age hierarchical clustering [ELL09]. The clustering process
stops once the minimum complete distance between any pair
of clusters exceeds a distance threshold τδ. In all the ex-
periments, we use a conservative threshold τδ = 0.1 which
would lead to early stopping and hence possibly redundant
clusters . In the next step, feature mode consolidation, such
redundant clusters are dealt with across the set of shapes.

The distance measure used in the clustering process is a
dissimilarity measure between curve segments; it is built up-
on the shape distributions [OFCD02] and the curvature his-
togram descriptors. Histogram-based descriptors are more
robust against scale differences and replication of pattern-
s which are both common for curves possessing the same
style. The dissimilarity δi j between two curve segments i
and j is given by

δi j =
√
‖Hi−H j‖2

2 +‖Ki−K j‖2
2, (1)

where Hi and Ki are the shape distribution and curvature
histogram of curve segment i, respectively. Figure 4 illus-
trates the shape distributions and curvature histograms of
three curve segments. The shape distribution here is a 2D
analogue of the D2 shape distribution in [OFCD02], which
measures the Euclidean distance between two random points

Figure 5: A group of highly correlated feature modes in the
initial FSM (between yellow lines in middle matrix) is con-
densed into a single feature mode in the consolidated FSM.

on the curve segment. Both shape distribution and curvature
histogram are aligned by the maximum sample values to ac-
count for differences in scale.

Initial FSM. Let there be n shapes in the input set and m
clusters (initial feature modes) obtained from the previous
step. We define the initial FSM A as the m×n matrix with

Ai j = exp(−d2
i j/θ

2),where di j = min
s∈S j

∑t∈Fi
δst

|Fi|
. (2)

Here Fi and S j denote the sets of curve segments from cluster
i and shape j, respectively, and the Gaussian width θ = 0.2.
In other words, di j is the minimal mean dissimilarity be-
tween any curve segment s from shape j and all the curves
in feature mode Fi. Here m is the total number of per-shape
feature modes, which is typically 10-30 per shape, over all
the shapes in the data set.

Note that we do not define Ai j as a membership indicator,
but use curve similarity to compensate for any random errors
which may arise from the clustering. That is, Ai j does not
indicate whether any segment in Fi belongs to shape j but
rather measures the “extent” a segment in Fi appears in j.

Consolidated FSM. The initial FSM now contains associ-
ation information between any per-shape feature mode and
any shape. Thus it allows an inter-shape feature analysis. The
purpose of feature mode consolidation is to arrive at a con-
densed set of feature modes to reflect contents and styles
in the input set. A content-revealing (respectively, style-
revealing) feature mode is a mode of features shared by the
subset of shapes possessing that content (respectively, style).
The subset of rows in A that form such a feature mode are
those that are highly correlated; see Figure 5.

We consolidate the initial set of feature modes by cluster-
ing the rows of the initial FSM A, where the distance mea-
sure employed arises from row-wise correlation analysis in
A. Regarding each row of A as observations of a random
variable, we define the correlation between a pair of rows
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Figure 6: Style-content analysis on a set of cutlery shapes (left). Rows and columns of the FSM are re-ordered to clearly indicate
content (top), style (middle), and background features (bottom). Right: shapes and curves that correspond to these features. Only
two background feature modes are displayed. Shapes marked by the purple stars show an undetected curve style.

(X ,Y ) based on the Pearson product-moment correlation co-
efficient R,

corr(X ,Y ) =

{
R(X ,Y ) if R(X ,Y )≥ 0,
0 otherwise,

(3)

where

R(X ,Y ) =
Cov(X ,Y )√

Cov(X ,X)Cov(Y,Y )
, (4)

and Cov(•,•) is the covariance between two sets of data.

We define a distance measure between two rows Ai and A j
of A as dist(Ai,A j) = 1− corr(Ai,A j). The clustering of the
rows is again carried out by complete linkage hierarchical
clustering with a stopping condition τdist = 0.1. We com-
pact the initial FSM A into a consolidated FSM Â, in which
each row corresponds to a cluster. The row, a (consolidated)
feature mode, is obtained by a simple averaging of the rows
from A that belong to the cluster.

Note that by using row correlations for clustering, as a
consequence of Assumption IV from Section 1, a row rep-
resenting a style and a row representing a content are less
likely to be clustered or consolidated into a single row in
Â; this is certainly desirable as the goal of our analysis is
style-content separation. Moreover, the use of a conservative
threshold for this second clustering step also avoids over-
clustering of the rows.

5. Style-content separation

Our style-content analysis operates solely on the FSM Â.
Before executing style-content separation, we first pre-filter
the rows to remove some background features. The “diversi-
ty” assumption (Assumption I) on style and content implies
that they cannot be too dominant in terms of the number of
shapes they cover. We use a conservative threshold of 50%
to filter out any row that covers more than half of the shapes
in the set, where a feature (row) i is said to cover a shape
(column) j if Âi j > τcoverage = exp(−1/4).

Content identification. After the pre-filtering, we extract
rows from Â that we deem to correspond to content features.
In each row i, we flag all the peaks, entries along the row
whose values exceed τcoverage. Note that these peaks indi-
cate coverage of shapes by the feature mode in row i. Denote
by Si ⊆U , where U = {1,2, . . . ,m}, the set of shape indices
corresponding to the flagged peaks in row i. Our content de-
tection scheme seeks to find the smallest (in cardinality) col-
lection of Si’s that form a non-overlapping partition of U .
The problem is NP-complete since it can be shown that the
set cover problem [Kar72] reduces to it.

We now justify the above criteria for content identification
based on the assumptions we made from Section 1. With-
out loss of generality, let Si1 , . . . ,Sik form the smallest non-
overlapping partition of U . Then we claim that all the rows
i1 to ik correspond to content-revealing features. Assuming
otherwise, then there must be a subset U ′ of U that is cov-
ered by a set R1 of style rows. However, by Assumption II,
U ′ must also be covered by a set R2 of content rows. Further,
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Figure 7: Style-content analysis on a set of goblets. Purple stars point to “non-styles” identified and a shape sharing the feature.

Figure 8: Style-content analysis results on a set of teapot and cup shapes. Purple stars point to an undetected style.

by Assumption III, by replacing R1 by R2, since |R2|< |R1|,
the total number of rows, the size of the non-overlapping par-
tition, would decrease, contradicting with our assumption.
This concludes our justification.

There may very well be heuristic solutions to the non-
overlapping set cover problem. However, since the number
of rows in Â arising from all of our datasets is always rather
small, we simply resort to exhaustive search. In practice,
due to the existence of noise in the data, e.g., background
shapes which do not belong to any significant content group-
s, we “soften” the search criteria, only requiring the non-
overlapping collection of Si’s to cover τcontent = 80% of the
shapes in the input set. Suppose there are multiple solutions
of the set cover problem and the best solution has cardinality
z. Among those solutions whose cardinality is no more than
z+ 1, we choose the solution that has the smallest variance
over the cardinalities of Si’s. Assumption I implies that the
cardinality of Si can be neither too large (not diverse) nor

too small (not significant), which can be translated into the
cardinalities of Si’s should have a small variance.

Indeed, those remaining shapes not covered by the collec-
tion from our solution are regarded as background shapes.

Style identification. With the set C of content features iden-
tified, we sort the remaining rows by their correlation with
C. Specifically, we define the style score of row j by

σ j = 1− max
i,Âi∈C

corr(Âi, Â j)

q
, (5)

where q is the number of content features (rows) in C whose
boundary Â j crosses. Top-ranked rows are deemed to corre-
spond to style features and those rows scored below τstyle =
0.95 are regarded as corresponding to background features.
This style identification scheme is motivated by Assumption
IV. Finally, any shape not covered by any identified style is
regarded as a background shape as well. Thus, we require a
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non-background shape to possess both an identified content
and one or more identified styles.

6. Style extraction results

Results in this section mainly demonstrate the ability of our
algorithm to identify intuitive curve styles and contents from
a set of shapes. Three sets of results are given in Figures 6-
8, all obtained using the same set of threshold parameters.
Additional analysis and application results can be found in
the supplementary material.

Datasets and data source. Each set of shapes in our exper-
iment possess diverse contents and diverse styles. Although
there is no technical requirement on what type of contents
can be included in a set, the analysis and application results
(see Section 7) are more meaningful when the shapes fal-
l in a similar category. The majority of the silhouette con-
tours in the test sets were obtained from on-line reposito-
ries including bigstock.com and shutterstock.com. However,
these readily available shapes often do not come in sufficient
numbers to form non-trivial content groups. To this end, we
added more shapes into the datasets by manual part trans-
plantation to ensure that the content groups have non-trivial
sizes (more than 25 shapes per group). Note that we have not
synthesized any new curve styles; all curve styles in the sets
were found in the on-line repositories.

Style-content separation and identification. To better il-
lustrate the style-content separation results we obtain from
the FSM, we re-ordered its rows and columns. Content fea-
tures (rows) are on top, followed by style features sorted
by their style score, and then background features. Column-
wise, the shapes are arranged in content groups with back-
ground shapes listed to the right; see Figures 6-8. Shapes
and curves correspond to these features are displayed to the
right; only two background features are shown in each case.
While we can generally observe intuitive identification of
styles and contents, our analysis results can be imperfect
or at least debatable. Figures 6 and 8 show possible unde-
tected styles (marked by purple stars). In Figure 7, a rather
non-stylish pair of goblets had a high style score and one
of the identified background shapes actually possesses the
same “style” (similarly marked).

Performance. The running time of our algorithm is domi-
nated by the number of curve features detected for a given
set of shapes, since clustering curve features is expensive and
scales quadratically (typically 30-200 curve segments were
extracted for each shape). Our current non-optimized imple-
mentation typically takes 10-20 minutes for most sets that
include around 30 shapes.

Note that we apply a two-step clustering scheme, includ-
ing per-shape feature modes clustering and FSM consolida-
tion clustering, instead of a global clustering on the set of all

Figure 9: Our algorithm fails to identify the curve styles in
the cutlery set shown in this figure since the set doesn’t con-
tain significant styles. Also our curve dissimilarity measure
fails to cluster all the knife heads as one feature mode.

Figure 10: Our algorithm interprets styles as contents in the
set of teapots, because this set is not general enough to re-
flect the relationship between content and style (breaking
Assumption III).

curve segments from all shapes. Suppose shape j produces
n j curve segments, and since clustering has quadratic com-
plexity, the performance of feature modes clustering can be
improved from (∑n j)

2 to ∑n2
j . Note when the number of

rows in the intial FSM increases, the complexity in the sec-
ond step clustering is increased as well. However due to the
scale of FSM being much smaller comparing to the scale of
all curve segments, the improvement can become significant
when the number of shapes and n j are both big.

Failure case. Our algorithm would fail to identify curve
styles in a natural way if the given set does not satisfy our
current assumptions. Figure 9 shows a cutlery set that con-
tains significant contents but no significant styles (breaking
Assumption I). Although it seems clear for a human that this
set contains three major contents, our relatively simple curve
dissimilarity measure in Equation 1 fails to cluster all the
knife heads as one single feature mode. This is because some
handles look very similar to the knife heads and thus violate
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the clustering. In this case, more sophisticated dissimilarity
measures such as the Fast Marching Method [FB03] can be
applied, however this method would increase the computa-
tional cost significantly. This set also shows an example of
Assumption (III) at work, i.e., the number of style varieties
is expected to exceed that of content varieties in the set.

For the teapot set in Figure 10, our algorithm interprets
styles as contents, thus a confusion. This is mainly because
this small input set breaks Assumption III. However, our al-
gorithm is still able to return two sets of feature modes from
the teapot set, one content and the other style. The binary
decision of which is style and which is content can be made
by additional assumption(s) or by the user.

7. Applications

Analyzing curve styles allows identifying the style curves in
a shape and developing several style-based applications. On
a single shape, one can remove or exaggerate an identified
style curve. In a set of shapes, based on style-content sep-
aration, one can blend between the styles of two shapes or
transfer the style from one shape to another. The latter also
enables changing the style of whole objects as well as syn-
thesizing missing content with a given style.

Style removal. Silhouette curve styles typically correspond
to high-frequency contents. Thus, removing a style is achiev-
able via smoothing. However, simply smoothing the entire
contour of a shape not only removes the style but also dis-
torts other parts of the shape. By identifying specifically the
style curves, one can concentrate on their removal. Since
style segments are typically feature-rich, potential applica-
tions of style removal include the elimination of such extra-
neous feature points, assisting feature-driven analysis tasks
such as outline segmentation or finding correspondence.

Our approach to style removal is to delete the segment
containing the style curve from the outline contour and then
smoothly blend in a style-free replacement. The key idea
is to replace the style curve by a smoothed version which
maintains the base shape of the curve. The base curve is
defined using implicit Laplacian smoothing [SCO04] of the
style curve. Assuming that the style curve is defined by a
piecewise-linear set of points V = {v1,v2, ...,vn}, the base
curve is the curve that minimizes the quadratic energy:

‖∆V ′‖2 +∑
i

w2‖v′i− vi‖2, (6)

where V ′ = {v′1,v′2, ...,v′n} are the vertices of the base curve
after style removal. The first term removes geometry details
along the normal directions using the Laplacian; the second
term preserves the base shape and is controlled by the posi-
tional weights w. If L is the n×n Laplacian matrix then this
energy is minimized by solving the following linear system:

[
L
wI

]
V ′ =

[
0

wIV

]
. (7)

Figure 11: Style removal: the identified style-curves (red) are
replaced by a smoothed style-less segment.

Style exaggeration. Similar to style removal, exaggerating
all features in a shape can hardly lead to style exaggeration.
The explicit knowledge that identifies style curves must be
used here as well. Global approaches to feature exaggeration
include frequency-domain amplification [VL08] and the ap-
plication of a de-smoothing operator [SKB98]. As demon-
strated in Figure 12, such approaches would not only exag-
gerate stylish features but also affect other parts of a shape.
Having curve styles identified, the exaggeration can be con-
fined to the style only. Our style exaggeration is implement-
ed by enhancing the Laplacian coordinates [WCS∗11] of
each style curve V . Briefly, the new positions V ′ are found by
solving the Poisson equations LV ′ = wLV , where w is a pos-
itive weight (w > 1 implies a style exaggeration and w < 1
corresponds to a depreciation).

Style blending. Using sets of shapes with many styles, new
curve styles can be synthesized by style blending. Given two
extracted style segments, we compute a blending between
them by merging the Laplacian coordinates of the two style
curves. To blend a source style curve Cs with a target style
curve Ct , we first create a shared parameterization. We pa-
rameterize both by chord length and then re-sample Cs ac-
cording the parameterization of Ct . Next, we blend Cs into
Ct by calculating new positions V ′ for the vertices of Ct . The
positions are found by solving a Poisson equations similar to
the formulation used for style exaggeration:

LtV ′ = wsLsVs +wtLtVt , (8)

where ws and wt are positive weights balancing the two
styles, ws +wt = 1 and Ls and Lt are Laplacian matrices of
Cs and Ct respectively (see Figure 13).

Style transfer. Transferring the style of shape Os to shape
Ot is more involved than blending style curves since these
curves could be positioned in different places along the sil-
houette of the shapes. Hence, we first create a style-less
base-shapes Bs and Bt by style removal. Next, we extrac-
t feature points from Bs and Bt using a similar method as
in Section 4. The feature points partition both shapes to a
set of curve segments which are delimited by a pair of adja-
cent feature points. Each such segment in Bs that occupied
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Figure 12: From left to right in each triplet: the input shape,
frequency-domain amplification result, and our style exag-
geration result, respectively. Note how amplification creates
a global change that may lead to distortions.

Figure 13: Blending a source style curve (a) into a target
style curve (b). The style curves are marked by red. In (c)
the blending weights are ws = wt = 0.5, and in (d) ws = 0.8
wt = 0.2.

an original segment with a style curve in Os is defined as
a support region. Next, we find the segment in Bt that best
matches any support region in Bs, and copy its curve style.
We use the dissimilarity measure defined in Equation (1).
We also copy this style curve to any symmetric segments in
Bt .

Style transfer leads to our key application based on style-
content analysis: the synthesis of new shapes based on style
transfer. We can synthesize missing shapes inside our style-

Figure 14: Synthesizing shapes using style transfer on a sub-
set of cutlery: golden shapes are synthesized based on the
black ones. Each row represents a style (marked by a red
box), while contents are presented in hyper-columns, each
specific shape occupies a sub-column.

content table by transferring the style of existing shapes in
the table. Each missing entry, Ti j, is filled by transferring the
style at row i to the shape in column j. Instead of using a sin-
gle shape, we remove the style of all shapes in row i (defining
the style), extract feature points and find candidate support
regions. Using a style-less shape from column j (defining
the content), we find the best matching support regions from
all candidates and copy its style. Hence the style transfer is
executed by blending the style curve of row i to the segment
most similar to a support region in the target shape. For ex-
ample, in Figure 14, 15, 16, the original shapes are shown
in black and the new synthesized shapes created using style-
transfer are shown in gold.
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Figure 15: Synthesis by style transfer on a goblet set.

Figure 16: Synthesis by style transfer on a furniture set.

8. Discussion, limitation, and future work

The presented work is a preliminary attempt to answer the
difficult and still open question of what makes a shape style
and how to identify it. Our algorithm is unsupervised and ly-
ing at its core is a novel formulation for style-content separa-
tion in a set of shapes based on an analysis of feature-shape
association. Results on several datasets demonstrate intuitive

Figure 17: A set of metal wall art pieces which would make
style analysis both interesting and challenging.

identification of local and decorative curve styles in a set of
shapes. Several style-related applications are also develope-
d to show the utility of curve style identification. Figure 17
offers a glimpse of the difficulty and perhaps also the beauty
of the general problem of style extraction.

Generality. We believe the utility of the feature-shape asso-
ciation matrix and our formulation for style-content separa-
tion in a set is general. Substituting feature modes given by
curve segments by other types of features allows other styles
to be identified. However, any attempt to handle different
forms of styles in one shot would face the difficult question
of how to select the right features.

Styles aplenty. Styles can be about appearance or form. Our
curve styles belong to the former while the apparent styles in
Figure 17 are more about structure. The word style can mean
so many different things and for some of them, it even seems
difficult to articulate what the styles are, let alone finding
proper mathematical formulations for them.

Limitations. We only identify curve styles along 2D silhou-
ette profiles that are local and decorative in nature, i.e., we
do not handle global appearance or structural styles, nor 3D
shape styles. As an unsupervised set analysis, its success de-
pends on the set given and fulfillment of the associated as-
sumptions. Currently, the analysis algorithm relies on sev-
eral tuned parameters. Although all the experimental results
shown were obtained using the same parameter setting, pro-
viding some level of robustness indication, the best results
for new inputs may require changed parameters. On a tech-
nical level, our current choices for the style-oriented curve
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similarity measure and clustering distances are both rather
basic. Generally, the robustness of our analysis should stil-
l be subjected to more rigorous and larger-scale testing. In
particular, automatic, perhaps data-driven, setting of the d-
ifferent threshold parameters is worth investigating. Finally,
we still lack a principled evaluation for the analysis results;
it would seem that to truly test whether the styles extracted
appeal to our intuition, user evaluation is called for.

Future work. In addition to addressing issues related to im-
plementation and evaluation, we also would like to pursue a
few other problems. One of them is the identification of non-
local decorative curve styles. The most interesting and chal-
lenging pursuit is the modeling and identification of styles in
general. Exploring the use of a supervised approach may be
interesting. One problem instance is to learn an unknown
style from a set with the knowledge that the set indeed
possesses some common styles. Moving from appearance-
oriented styles to structural styles such as those revealed in
Figure 17 is also interesting and challenging. Last but not
the least, we would like to extend our style analysis to 3D
shapes.
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