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Abstract—We present an implicit approach for pair-wise
non-rigid registration of moving and deforming objects.
Shapes of interest are implicitly embedded in the 3D
implicit vector space. In this implicit embedding space, reg-
istration is performed using a global-to-local framework.
Firstly, a non-linear optimization functional defined on the
vector distance function is used to find the global alignment
between shapes. Secondly, an incremental cubic B-spline
free form deformation is used to recover the non-rigid
transformation parameters. Local non-rigid registration is
posed in terms of minimising an energy functional, for
which we give a closed-form linear system and solve it
using an improved iterative Gauss-Seidel method. Our
approach can consistently produce smooth and continuous
registration fields, and correctly establish dense one-to-
one correspondences. It can naturally deal with both open
partial and closed shapes, and imperfect models with
gaps and noise, through its use of the implicit vector
representation. Experimental results on several datasets
demonstrate the robustness of the proposed method.

Keywords—Non-rigid registration; global alignment;
dense correspondence; vector distance function; implicit
vector space.

1. INTRODUCTION

Registration is a fundamental problem in shape acqui-
sition and reconstruction. However, forming a coherent
model of an object from several datasets is nontrivial,
and the approach to doing so depends on the shape
representation, as well as the registration strategy and
nature of the transformations which map corresponding
points between datasets. When the object evolves non-
rigidly over time, the description of the transformation
is more complicated than in the rigid case. Practical al-
gorithms must also face other challenges—for example,
scanned data is noisy, and typically has gaps arising
from occlusion during data acquisition.

Shape representation is an important choice when
considering approaches to registration. Existing methods
perform 3D non-rigid registration based on point set [1],
[2], [3], [4], [5], parametric description [6], [7], and
volumetric representation [8], [9], [10]. Point set is
used as a prime choice for the non-rigid registration,
since scanners directly generate sample points. A known
limitation of point set representation is that, given two
shapes to be registered each represented by a point
cloud, the two point sets are not sampled at correspond-
ing locations. This can lead to inherent inconsistencies
in the two point sets, causing problems when attempting

to find point correspondences between the two shapes.
Parametric representation [6], [7] may also be used for
non-rigid registration. However, finding explicit param-
eterization of one shape in 3D dimensions is hard in
most situations. Thus, such methods mainly focus on
open partial shapes and do not handle whole shapes.
Volume representation [8], [9], [10] is another choice
for registration. However, for the open partial shapes, it
is a challenging task to generate appropriate volumes,
and such methods also must assume that any gaps in
the data are not large.

Implicit representation has already been used in 2D
registration, in the level set method [11], since it has
the advantage that one can perform numerical compu-
tations on shapes using a fixed Cartesian grid with-
out parameterizing them. Implicit representations can
handle both open partial and closed shapes, and can
do so stably and robustly in the presence of shape
perturbations and holes. However, the conventional im-
plicit signed distance function (SDF) representation has
difficulties in defining inside/outside for open shapes,
particularly near the boundaries, similarly to volumetric
representation [8], [9]. Implicit representation has been
used for tasks such as editing [12], shape interpola-
tion [13], [14], and analysis [15], but they do not
provide correspondences between two models. Recently,
a particular implicit vector distance function (VDF)
representation [16], [17] has been proposed which is
more flexible than the traditional SDF. In 2D, [17]
solves the problem of pairwise non-rigid registration
using an implicit VDF representation, for both whole
and partial shapes. However, the extension from 2D to
3D is nontrivial, since transformations are more complex
in 3D. For example, 3D rotations do not commute and
cannot be linearized as in the 2D case. In the paper, a
3D VDF-based registration algorithm is proposed, which
can automatically find dense correspondences between
different poses of a dynamic object undergoing moving
and deforming transformation, by warping the relevant
3D implicit vector spaces. By taking the advantage of
VDF representation, our approach defines appropriate
energy functions which are optimized to recover the
transformation parameters in both rigid and non-rigid
registration schemes.

Our approach requires the fairly mild assumption
that the object does not change its genus during the
registration. We do not need to assume that the motion



Fig. 1. Our global-to-local registration framework in the 3D implicit vector space. (a) Initial poses, front and side views (blue: source
shape; brown: target shape). (b) Cross-section of the source vector space displayed as the L2 Euclidean metric of the VDF, points on the
shape overlapping the zero level set. (c) Target vector space. (d) Global alignment after nonlinear optimization. (e) Result after local non-rigid
registration using IFFD; the transformed source shape (green) is overlaid on the target shape (brown). (f) Dense correspondences: 34 randomly
selected corresponding points shown with matching colors.

is globally or locally rigid, nor do we have any as-
sumptions on the topology. In contrast to many previous
methods, we do not require additional information or
conditions, such as marker correspondences [18], [19],
manual segmentation [20], small-scale differences be-
tween shapes [1], [2], [4], [8], or prior templates [21].

We perform non-rigid registration using a global-to-
local framework, illustrated in Figure 1. The shapes of
interest are represented in an implicit form, embedded
in the vector space (displayed as the Euclidean metric in
Figures 1(b), 1(c)). Global alignment (see Figure 1(d))
is achieved by finding the rigid rotation and translation
parameters which are the solution to a nonlinear sum-of-
squared-differences (SSD) functional. Local non-rigid
registration (see Figure 1(e)) is carried out by finding pa-
rameters of a cubic B-spline-based incremental free form
deformation (IFFD) [22], by minimizing another SSD
functional. Unlike many traditional non-rigid registra-
tion methods, we do not use nonlinear gradient descent
method to estimate the IFFD control point positions
in implicit vector spaces. Instead, we approximate the
functional for non-rigid registration using a Taylor series
expansion, leading to a linear system with a closed-form
solution.

The main contributions of our work include:

• We give a practical implicit non-rigid registration
approach for moving and deforming shapes, which
establishes dense one-to-one correspondences (see
Figure 1(f)) between points of source and target
shapes. It is robust to the presence of gaps and
noise in the data, and it can simultaneously handle
both open partial and closed shapes.

• Based on the VDF representation, global alignment
is defined as a nonlinear optimization problem.

Global VDF alignment can accurately find the rigid
motion between shapes. It can not only work well
for non-deforming objects, but also find the under-
lying rigid transformation between salient parts of
deformable objects.

• A closed-form non-rigid registration equation is de-
rived from the VDF representation, which can read-
ily be solved using an improved iterative Gauss-
Seidel method. This has advantages over typical
gradient descent optimization methods which need
more careful initialization and are more time con-
suming.

The remainder of this paper is organized as follows.
After related work is addressed in Section 2, the 3D
VDF representation is introduced in Section 3. Section
4 considers global rigid alignment, followed by local
non-rigid registration in Section 5. Experimental results,
limitations, and further work are discussed in Section 6,
and conclusions drawn in Section 7.

2. RELATED WORK

Due to space limitations, we mainly focus on previous
work on 3D non-rigid shape registration, as well as
relevant 2D implicit registration.

For the non-rigid registration problem, transforma-
tions are used to match a source shape with the target
shape, allowing for differences in pose. The transfor-
mation includes not only a global rigid transforma-
tion (rotation, translation) but also local transformations
that deform a shape locally and non-rigidly. The most
widely approach to find the transformation is to use
non-rigid variants of the iterative closest point (ICP)
technique [23], for example [18], [24], [25], [26], [27],
[28], [29]. Non-rigid ICP algorithm is able to find a
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smooth deformation that aligns the shapes, but are only
suitable for small-scale differences in shape. In addition
to difficulties caused by the presence of holes, searching
for nearest corresponding points is time-consuming for
large 3D datasets.

Other as-rigid-as-possible deformation models have
also been applied to non-rigid registration [2], [4], [5],
[6], [30]. To find the transformation, isometry is used as
a general basic criterion both for registering the input
models [5], [9], [26], [31], [32], [33] and for determining
the deformation [3], [10], [29], [30], [34], [35], [36],
[37], [38], [39], [40], [41]. In this paper, we explicitly
separate the global and local transformation, deriving
the rigid and non-rigid transformation via warping VDF
fields. Particularly, by using an IFFD model [22] to
represent the local deformation, we are thus freed from
the restrictions of the as-rigid-as-possible assumption.

Different registration strategies have been used to
recover the optimal transformation parameters given a
shape representation and a transformation model. Ex-
isting approaches belong to two categories. The first
directly search for correspondences between shapes,
and then estimate the transformation parameters using
the correspondences [5], [19], [32], [34], [35], [41],
[42], [43], [44], [45], [46]. Correspondences can be
explicitly given [18], [19], [41], or determined from
salient geometric features, such as curvature [5], slip-
page [32], or meshDOG [42]. They may also come
from other intrinsic domains, such as Möbius space [36],
(global) multidimensional scaling [29], [37], [38], or
heat kernel signatures [39], [40]. The second class of
approach seeks to recover the optimal transformation
parameters through optimization of some global energy
functional [1], [2], [4], [5], [6], [8], [10], [21], [30], [47].
As pointed out in [5], [6], global optimization methods
generally could give stable results. Our approach falls
into the latter category.

2D implicit registration is also relevant, where the
concept of VDF was first used. VDF is a further exten-
sion of the conventional SDF, which has been widely
applied to 2D image registration [48] and segmenta-
tion [49]. Typical dissimilarity measurements adopted by
SDF non-rigid registration methods are mainly defined
based on SSD [50], [51], mutual information [52], and
statistical analysis [53]. A variational scheme based
on VDF has been described for finding 2D transform
parameters for both global and local registration [17].
However, using such an approach in 3D is not a direct
extension of the 2D case, due to the extra complexity
of the transformation calculation.

3. VECTOR DISTANCE FUNCTION REPRESENTATION

This section briefly reviews the basic concepts and
algebra of the VDF [16]. For a surface model M in
3D, the VDF is given by f : R3 → R3, and defined as

f(x) = x− pM(x), ∀x ∈ Ω, (1)

where Ω is the embedding space, and pM(x) is the
point on M with minimum Euclidean distance to x. In
this representation, it is easy to catch that, firstly, the
shape of interest is represented as the zero level set of
the VDF: shape points satisfy ‖f‖ = 0, where ‖ · ‖ is
the L2 Euclidean metric. Secondly, for the closed model
with zero level set, there is a relationship between the
VDF and the traditional SDF:

d(x) = sign(x)‖f(x)‖, (2)

where d(x) is the distance field, and sign(x) is positive
outside the shape, and negative inside it.

The VDF is more flexible than the SDF when dealing
with arbitrary topology [16]. The definition of SDF
is undefined at the boundary for open shapes, which
prevents the effective use of registration formulations
minimizing an energy function of level set differences.
The VDF case does not suffer from this problem, and
can naturally cope with both open and closed shapes.
Particularly, for open shapes, there is no issue of sign.

4. GLOBAL ALIGNMENT IN 3D VECTOR SPACE

In this section, we explain how the VDF is used
to recover the global alignment (rotation and transla-
tion) for non-deforming and deformable shapes. After a
theoretical problem formulation is deduced in Sections
4.1, the global alignment is solved in Section 4.2, then
experimental results are presented in Section 4.3.

4.1 Global VDF alignment formulation

Given a source shape S and a target T , consider a
global transformation A which rigidly aligns S to T .
A has parameters Φ comprising a rotation R and trans-
lation T. For any point x in the space, the transformation
A applied to x can be written as A(Φ; x) = Rx + T.
From the definition of VDF, applying the transformation
to any pair of points x,pS(x) ∈ ΩS results in a
corresponding pair of points x′,pT (x′) ∈ ΩT . We find
that:

fT (A(Φ; x)) = x′ − pT (x′)

= Rx + T− (RpS(x) + T)

= R(x− pS(x))

= RfS(x). (3)

Thus, the VDF transformation is rigid-invariant under
global alignment.

Finding the optimal global alignment for two (non-
deforming) surfaces can be computed by finding the
transformation A between S and T , which minimizes a
dissimilarity measurement, similar to the 2D case [17].
The dissimilarity can be defined as

rd(Φ; x) = RfS(x)− fT (A(Φ; x)). (4)

For simplicity, rd(Φ; x) is abbreviated as rd after now.
By using all points of a sampling grid in the vector
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space, a global SSD energy functional can be defined,
which should be minimized:

Eg(Φ) =

∫
ΩS

rTd rd dx. (5)

In this formulation, the point-correspondence problem
is converted into a nonlinear optimization to minimize
the SSD. In fact, this approach is also effective for
deformable shapes. Generally, there is a dominant rigid
alignment between deformable shapes which are non-
rigid deformed in some local regions. This approach
works well in practice because the use of VDFs down-
grades the importance of local deformations. So it is
insensitive to outliers. For the same reason, the global
VDF alignment is robust to noise in measured data.

The vector distance fields derived from S and T are
defined over all space. To deal with this technical lim-
itation, and to decrease computational complexity, we
consider regions defined by two equal-distance neigh-
borhoods around the shapes. That is sampling is limited
to a small band ε around S and T , formed by inward and
outward offsetting. The strategy is reasonable, since far
away sample points have negligible influence. We set ε
to 10 times the interval size of the sampling grid (with
70 × 70 × 70 resolution) by default for all examples.
Formally:

Eg(Φ) = ξ2
ε (fS , fT )Eg(Φ), (6)

where ξε is the binary function given by

ξε(fS , fT ) =

{
0 if min(||fS ||, ||fT ||) > ε
1 otherwise

. (7)

4.2 Nonlinear optimization solution

The parameters of the global transformation A com-
prise a rotation R and a translation T which we wish
to find. In the 2D case [17], R can be found directly,
due to linearity of 2D rotation. However, finding R
is a nonlinear problem in 3D, and careful choice of
representation is important in solving this problem.
We use quaternions to estimate the rotation, following
the approach in [54]. In our approach we first relax
the problem to find an optimal linear transformation,
and then extract the rotation part from it. Our overall
framework follows Algorithm 1.

Algorithm 1 Nonlinear optimization of global VDF alignment
repeat

initialize Φ
while (energy decreases AND (iterations < maxInIter))

use Jr to update estimate of Φ
obtain rotation R from q
transform S by (R,T)

until (energy is low enough OR (iterations < maxOutIter))

Our global VDF alignment method employs the
Levenberg-Marquardt (LM) method [55] in an inner
loop to minimize the nonlinear energy given in Equa-
tion 6; there are 7 unknown parameters. The initializa-
tion for Φ = (q,T) is q = (1, 0, 0, 0) and T = (0, 0, 0);

the former is the quaternion representing the rotation,
and the latter the translation. Each LM iteration solves a
linearized problem to improve Φ, by using the Jacobian
Jr of rd calculated as follows:

∂rd
∂q

= [∇qRfS(x)−∇fTT (A(Φ; x))]∇qA(Φ; x)

∂rd
∂T

= −∇fTT (A(Φ; x))∇TA(Φ; x). (8)

The process is repeated until either a maximum number
(maxInIter, set to 30) of iterations has been per-
formed, or the change in the energy function Eg(Φ) is
insignificant. In our experiments, it usually takes about
20 iterations for the change in energy to be less than
10−4(1 + Eg(Φ)).

Once the LM optimization has converged, we perform
polar decomposition on the corresponding matrix of q
to obtain the rotation R. Finally, the rotation R and
translation T are applied to update the pose (orientation
and position) of S.

Just like any nonlinear optimization, our system con-
verges to a local optimum which may not represent
globally best solution. We employ an outer iterative
improvement procedure to find a better local minimum
by restarting the optimizer from the updated pose of
S. After several iterations, S is gradually aligned with
T . The outer iteration is terminated when reaching a
maximal number (maxOutIter, set to 10), or the final
change in energy is less than 10−6(1 + Eg(Φ)).

4.3 Global Alignment Experiments

Results of performing global VDF alignment for 3D
shapes are given in Figures 1(c), 2, 3, 4(b), 6(b). Differ-
ent poses of a non-deforming shape are rigidly oriented
and translated in Figure 2, and registration of different
motions of a deformable shape are shown in Figure 3.
The results are compared with an efficient ICP variant
algorithm [56]. For the tetrahedron object rotated 45o

along one given axis as shown in Figure 2, [56] outputs
the input as the final result, since that pose corresponds
to a local minimal for its SSD energy function. In
contrast to [56], the parameters of the global transforma-
tion are correctly recovered by our approach. Figure 4
shows that [56] works poorly for deformable shapes—
see examples of the person’s legs and arms—since it
aligns shapes by determining assumed correspondences
between points in the source and target shapes based on
nearest distances. Our global VDF alignment algorithm
provides more reasonable results, as we find the main
rigid transformation between the salient parts of objects.
Our results for deformable shapes demonstrate that: our
global VDF alignment approach does more than just
finding the most obvious rigid transformation for non-
deforming models, it finds the rigid motion between
salient similar parts. Therefore, our approach could also
effectively solve the salient partial similarity measure-
ment problems for deformable objects, like [29].
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Fig. 2. Global alignment of non-deforming shapes: bunny (top row),
rigid walker (center row), and tetrahedron (bottom row). The initial
state is shown at the left (a), the alignment results of [56] and our
approach are at the center (b) and right column (c) respectively. For
the special tetrahedron case, [56] outputs the input as the result.

TABLE 1
GLOBAL ALIGNMENT EXPERIMENTS.

[56] global VDF
SSD Time SSD Time

bunny 0.0093 1.2s 0.0343 8.9s
rigid walker 0.0162 0.4s 0.0166 2.4s
tetrahedron × × 0.000328 5.1s
open walker 185.9 3.3s 169.2 8.6s
closed walker 40.46 1.4s 38.75 9.5s

Table 1 compares the registration results in terms of
quality and time (seconds) for the shapes in Figure 2, 3
with the ICP variant [56]. Registration quality is quali-
tatively assessed in terms of the final SSD for all sample
points. For our global VDF alignment, the sample points
are located in the vector space, while for [56], they are
directly sampled from the shapes. The ICP variant [56]
only uses a few of the sampled points (fewer than 500)
to find the rigid transformation, which gives it the fast
speed. In our approach, the accuracy is determined by
the resolution of the sampling grid: the higher resolution
used, the more accurate alignment obtained, at the cost
of longer time. We use a 70×70×70 grid by default. The
ICP variant [56] produces better accuracy for the bunny
and rigid walker than our approach with this default
resolution setting, but when using a higher resolution
(e.g., 96 × 96 × 96) grid, our registration accuracy is
better. We note, however, that SSD measurement is not
a particularly good metric of registration quality as it
does not take correspondences into consideration. This
ICP variant works well for non-deforming objects, but
performs less well for deformable objects (see, e.g., the
walkers in Figure 3). Our approach can handle both non-
deforming and deformable objects well.

To verify the robustness of our approach, an exper-
iment was carried out for 40 non-deforming examples
of the bunny and walker models using the default grid

Fig. 3. Global alignment of deformable shapes: open walker (tow
row) and closed walker (bottom row). For the input models shown
at the left (a), the alignments of [56] and our approach are displayed
at the center (b) and right (c). The reasonable rigid motion between
salient parts could be estimated by our approach.

size. In each case, S was fixed and T was generated
by applying a transformation to it. The translation pa-
rameters Tx, Ty, Tz were selected randomly in [−60, 60]
respectively, and for the rotation parameters, q0 was ran-
domly selected in [−1, 1], then the other parameters are
randomly generated by guaranteeing a unit quaternion
was obtained. These generated instances gave ground
truth for each case. Our approach produced successful
results in all 40 cases, the energy going down smoothly
until alignment was achieved. The measurements show
that the errors to the ground truth are small since the
relative error for each parameter is less than 3%.

5. LOCAL NON-RIGID REGISTRATION

Having found a global alignment, a local transfor-
mation is determined to recover natural non-rigid trans-
formation parameters that give a dense correspondence
between the implicit vector space of the final trans-
formed source shape S and that of T . In Section 5.1,
we introduce the IFFD space deformation model used
to represent this transformation, then explain how to
deduce its parameters in the closed-form system in
Section 5.2. The solution of this ill-conditioned linear
system is discussed in Section 5.3.

5.1 IFFD deformation model

We represent the non-rigid part of the transformation
using an IFFD deformation model with a cubic B-
spline basis function. IFFD manipulates a regular control
lattice P = {Pl,m,n} = {(P x

l,m,n, P
y
l,m,n, P

z
l,m,n)},

l = 0, . . . , L, m = 0, . . . ,M , n = 0, . . . , N overlaid
on the vector space ΩS :

ΩS = {x} = {(x, y, z)| (9)
lx ≤ x ≤ hx, ly ≤ y ≤ hy, lz ≤ z ≤ hz},

where lx and hx are the lowest and highest x-axis coor-
dinate value of the lattice, ly , hy , lz and hz are similarly
defined. We denote its initial regular configuration with-
out deformation by P0, and its deformed configuration
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by P = P0 + δP. Then the IFFD parameters Θ = δP
are the translations of the control lattice points in each
of the x, y, z directions:

Θ = {δPl,m,n} = {(δP x
l,m,n, δP

y
l,m,n, δP

z
l,m,n)}. (10)

As the control lattice deforms from P0 to P, the
deformed position x in the embedding space is defined
by a tensor product of cubic B-splines:

L(Θ; x) =
3∑

a=0

3∑
b=0

3∑
c=0

Ba(u)Bb(v)Bc(w)×

(P0
i+a,j+b,c+k + δPi+a,j+b,c+k), (11)

where

u =
x− lx
hx − lx

(
(L− 1)−

⌊
x− lx
hx − lx

× (L− 1)

⌋)
,

v =
y − ly
hy − ly

(
(M − 1)−

⌊
y − ly
hy − ly

× (M − 1)

⌋)
,

w =
z − lz
hz − lz

(
(N − 1)−

⌊
z − lz
hz − lz

× (N − 1)

⌋)
,

Ba(u), Bb(v), Bc(w) represent the ath, bth and cth

cubic B-spline basis function respectively, i, j, k are the
indices of the nearest associated lattice point to x:

i =

⌊
x− lx
hx − lx

× (L− 1)

⌋
,

j =

⌊
y − ly
hy − ly

× (M − 1)

⌋
,

k =

⌊
z − lz
hz − lz

× (N − 1)

⌋
,

and δPi+a,j+b,k+c, (a, b, c) ∈ [0, 3] × [0, 3] × [0, 3] are
the deformations of the 64 control points around x.

Based on the linearization principle of B-splines, a
B-spline through collinear control points is itself linear.
Hence the initial regular configuration of the control
lattice P0 generates the undeformed shape, i.e., for any
x within the lattice, we have

x =
3∑

a=0

3∑
b=0

3∑
c=0

Ba(u)Bb(v)Bc(w)P0
i+a,j+b,c+k. (12)

Combining Equations 11 and 12, and letting L(Θ; x),

being
3∑

a=0

3∑
b=0

3∑
c=0

Ba(u)Bb(v)Bc(w)δPi+a,j+b,c+k, de-

note the incremental deformation for x, we then have:

L(Θ; x) = x + δL(Θ; x). (13)

5.2 Closed-form system for IFFD parameters

Non-rigid registration is achieved by incrementally
evolving P in such a way that the deformation parame-
ters Θ minimize the non-rigid dissimilarity for x, now
measured using:

rn(Θ; x)) = fS(x)− fT (L(Θ; x)). (14)

From now on, for simplicity, fT (L(Θ; x)) is abbrevi-
ated as fT , δL(Θ; x) as δL, and rn(Θ; x)) as rn. Again,
we define a non-rigid SSD energy to be minimized:

En(Θ) =

∫
ΩS

rTnrn dx. (15)

We regularize it using a smoothness term on the local
deformation field δL. This is

Es(Θ) =

∫
ΩS

(‖∂δL
∂x
‖2 + ‖∂δL

∂y
‖2 + ‖∂δL

∂z
‖2) dx. (16)

Overall, the energy functional to be minimized for local
non-rigid registration is

El(Θ) = En(Θ) + αEs(Θ). (17)

The first term tries to produce the desired local defor-
mation while the second penalizes large rates of change
of deformation. For the reasons similar to the former
global VDF alignment, only the sample points, located
in the small band to the source and target shapes, are
used, and we set ε to 5 times the interval size of the
sampling grid.

For the above formulation, gradient descent method
is used to estimate each deformation parameter θi ∈ Θ
as follows:

∂El(Θ)

∂θi
= −2

∫
ΩS

rn
T (∇fT )T

∂δL

∂θi
dx

+2α

∫
ΩS

(
(
∂δL

∂x
)
T ∂

∂θi
(
∂δL

∂x
)

+(
∂δL

∂y
)
T ∂

∂θi
(
∂δL

∂y
)

+(
∂δL

∂z
)
T ∂

∂θi
(
∂δL

∂z
)
)
dx

= 0. (18)

If incremental step of each control point x was not
large, then we can use the following Taylor series
expansion to approximate the vector representation:

fT = fT (x + δL) ≈ fT (x) + (∇fT (x))
T
δL. (19)

Setting f(x) = fS(x)− fT (x), Equation 18 leads to:∫
ΩS

fT (x) (∇fT (x))
T ∂δL

∂θi
dx =∫

ΩS

((∇fT (x))T δL)T (∇fT (x))
T ∂δL

∂θi
dx +

α

∫
ΩS

(
(
∂δL

∂x
)T

∂

∂θi
(
∂δL

∂x
) +

(
∂δL

∂y
)T

∂

∂θi
(
∂δL

∂y
) +

(
∂δL

∂z
)T

∂

∂θi
(
∂δL

∂z
)
)
dx. (20)

This provides a linear system, as in the 2D case [17], to
give a closed-form solution for the final P = P0 + Θ,
in the form

K = Q P. (21)
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Here, elements of K and Q are given by

Krow =

∫
ΩS

fT (x) (∇fT (x))
T ∂δL

∂θi
dx,

Qrow,col =

∫
ΩS

((∇fT (x))T δL′)T (∇fT (x))
T ∂δL

∂θi
dx

+α

∫
ΩS

(
(
∂δL′

∂x
)T

∂

∂θi
(
∂δL

∂x
)

+(
∂δL′

∂y
)T

∂

∂θi
(
∂δL′

∂y
)

+(
∂δL′

∂z
)T

∂

∂θi
(
∂δL

∂z
)
)
dx. (22)

Here, δL′ is the abbreviation for δL′(Θ; x), the cubic
B-spline coefficient associated with each control point.

One typical advantage of the proposed closed-form
solution over the gradient descent is the robustness.
Not only the final results are no longer sensitive to
the initialization, but also the local minimum problem
during the computation has been eliminated. In addition,
the execution time could be greatly shortened, since the
gradient descent method always takes many iterations
(greater than 2) to converge towards a local minimum.

5.3 Improved iterative Gauss-Seidel solution

The symmetric indefinite matrix Q in Equation 21
is ill-conditioned. Experiments show that the direct
single value decomposition and traditional iterative tech-
niques [57] for linear system could not obtain desirable
results, since the conditioned number Q is generally
greater than 1036. We thus propose an improved iterative
Gauss-Seidel solver by changing Q into a diagonally
dominant matrix, as follows.

Given an ill-conditioned linear equation

Ax = b, (23)

where A is a (non-singular) ill-conditioned n×n matrix,
firstly, we decompose A into A = B + H, where B =
diag(a11, ..., ann).

(B + H)x = b (24)

Next, D is simultaneously added to both sides,

(B + H + D)x = b + Dx, (25)

where D is a diagonal matrix satisfying di =

sign{
n∑

j=1

|aij |, aii} and sign{a, b} returns the value of

a with the sign of b. Then, we may write:

(B + D) x = b + (D−H) x. (26)

It is easy to deduce that

x = (B + D)
−1

[b + (D−H)x] (27)

leads to an iterative formula:

x(k+1) = (B + D)−1
[
b + (D−H)x(k).

]
(28)

Let M = (B + D)−1(D−H), ∆x = x(k+1) − x(k),
then

∆x(k) = M∆x(k−1) = · · · = Mk∆x(0). (29)

This is convergent, since (B + H + D) is a strictly
diagonally dominant matrix satisfying the necessary
convergence condition. Consequently, we obtain an im-
proved Gauss-Seidel-like iterative formula:

x
(k+1)
i =

bi −
∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j + dix

(k)
i

bii + di
. (30)

6. RESULTS

Our global-to-local non-rigid registration method has
been implemented using C++ under Windows XP, on
a Pentium Xeon 2.8GHz dual processor platform. We
tested our approach with several datasets: one real
dataset of a walker generated by Pinocchio [58], three
datasets of elephant, arm, and haoTorso from [6], and
a real-world dancer dataset [44]. In each case a pair of
shapes was chosen as S and T .

To account for both large-scale and highly local non-
rigid deformations, we use an efficient multi-resolution
implementation of the IFFD framework. In all experi-
ments, an initial IFFD lattice resolution of 10× 10× 10
is used, and then the resolution of the entire lattice is
repeatedly doubled until a satisfactory deformation is
achieved. This may be performed as often as needed,
but typically 2 levels were sufficient for all examples.

6.1 Experiments

Different non-rigid shape registration experiments for
open and closed shapes are demonstrated in Figures 1
and 4. Our approach gives good, reasonably dense
correspondences for both partial and complete shapes.
The non-rigidly registered shapes do not have self-
intersections or other artifacts, these demonstrate the
effectiveness of our approach.

Our algorithm also works well in the presence of
missing data. For the real scanned haoTorso [6] shown
in Figure 5, our method produces accurate registration,
with quality comparable to [6]. To test the robustness of
our approach, we degraded the data by manually cutting
salient holes in the noisy models: see the noisy arm
shown in Figure 6. Our approach is able to provide a
successful registration even in this case.

The primary quality of a registration algorithm is
accuracy, which is demonstrated visually by the output
of our experiments. Computational efficiency is another
important issue, again demonstrated by our experiments.
The average convergence time for global alignment
of two 3D shapes is less than 10s, and it takes less
than 20s to perform local non-rigid registration. For the
elephant, dancer and arm examples, times are listed in
Table 2. In Table 2, The first row gives the number of
points for each input model. The next four rows give
parameters for the sampling grid resolution, the band
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Fig. 4. Global-to-local non-rigid registration for closed dancer models in front view (top row) and side view (bottom row). (a) Initial poses
(source: blue, target: brown). (b) Global alignment using SSD minimization, showing aligned shapes. (c) Iterations of local non-rigid registration.
(d) Final non-rigid registration using IFFD; the transformed source shape (green) is shown overlaid on the target shape (brown). (e) Dense
correspondences produced by global-to-local registration (221 corresponding points).

size relative to the interval size of the sampling grid,
the initial IFFD resolution, and the number of iterations
needed to solve the linear equation. The final two rows
list times for global alignment and local registration
respectively. For the haoTorso and elephant objects, our
approach spends less than 17s to finish the non-rigid
registration, while [6] takes over one minute to obtain
similar registration quality.

Fig. 5. Non-rigid Registration of haoTorso: (a) original position, (b)
results from two viewpoints.

Fig. 6. Non-rigid registration of the noise arm, (a) Original position,
(b) global alignment, (c) final non-rigid registration.

6.2 Limitations and further work

Our local non-rigid registration method relies on
linearizing the non-rigid deformation energy functional
using a first order Taylor expansion. As a result, our
approach does not handle great large-scale deformations

TABLE 2
EXPERIMENTAL STATISTICS.

dataset elephant dancer arm
# points 24k 10k 15k
# sampling resolution 70 70 70
# band size 5 5 5
# IFFD resolution 10 10 10
# iteration 8 10 6
global alignment 7.4s 9.2s 8.9s
local registration 16.4s 17.5s 13.9s

well. The incorporation of good feature constraints is
likely to improve registration accuracy and could help to
overcome this limitation. Incorporating correspondences
between feature points can be done as follows. Assume
the number of features is Nf . For each feature, let the
pair of corresponding points be xTi (i = 1, . . ., Nf ) on
the target shape T and xSi on the globally transformed
source shape S . Then the following feature correspon-
dence term is added into Equation 17.

Ef =
∑Nf

i=1
rTfirfi , rfi = xSi − L(Θ; xTi). (31)

We show an example in Figure 7, which uses feature
point constraints to register two shapes of a walker.
The two shapes significantly differ in the left arm and
left leg. Such larger deformations cause our original
method to stick in a local minimum (Figure 7.2.b). After
incorporating a small number of feature correspondences
a much better solution is obtained (Figure 7.1.b). Beside
these, Figure 7 also shows that if the deformation (e.g.,
right arm and right leg of the walker) was not so larger,
similar registration quality could be obtained without
feature constraints.

8



Fig. 7. The non-rigid registration of two shapes of one walker (source:
blue, target red) with (1) and without (2) feature constraints marked
by black spheres. (a) Original poses, (b) final results.

Since our method is an implicit approach, it shares
disadvantages common to such approaches. The size of
the representation is always that of the ambient space
even for shapes with low detail. However, as noted
in [22], this disadvantage is also a strength since it
provides flexibility for highly detailed models. Choosing
an appropriate resolution for the IFFD lattice is also a
tricky issue.

Some potential extensions could be made to our
algorithm. Firstly, instead of using IFFD with a regular
control lattice, other FFD models could be used that
allow the placing of control points at arbitrary locations,
such as Dirichlet Free Form Deformation [59]. Sec-
ondly, it would be straightforward to integrate explicit
techniques as in [12] to handle changing topology [47]
during the registration. Thirdly, it would be interesting
to apply our approach to object tracking, dynamic model
reconstruction, and morphing, since our registration
framework provides a way to handle a large amount of
data and establish intraframe correspondences.

7. CONCLUSIONS

We have introduced a global-to-local registration ap-
proach for moving and deforming shapes. The advan-
tages of our technique are that it does not require any
user specified markers, or prior templates. We have
demonstrated that the 3D implicit vector distance func-
tion representation yields a robust method that achieves
meaningful, accurate rigid and non-rigid registrations
even in the presence of large transformations. Our ap-
proach could work well both for open partial and closed
objects, even for inperfect noisy data with gaps.

Ultimately, the problem of non-rigid registration of
deformable shapes is ill-posed and no algorithm is
applicable to all scenarios. We believe, however, that our
approach pushes the limits of what can be achieved with
minimal prior information, and that the initial research
opens up the possibility of geometrical modeling and
processing in 3D implicit vector spaces.
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